[1] J. Rydberg, M. Cox, C.Musikas, G.R. Choppin, Solvent Extraction Principles and Practice, 2nd ed. Marcel Dekker, Inc., New York, 2004. [2] J.D. Kinrade, J.C. Van Loon, Solvent extraction for use with flame atomic absorption spectrometry, Anal. Chem. 46 (13) (1974) 1894-1898. [3] G.W. Stevens, J.M. Perera, F. Grieser, Interfacial aspects of metal ion extraction in liquid-liquid systems, Rev. Chem. Eng. 17 (2) (2001) 87-110. [4] J.M. Perera, G.W. Stevens, The role of additives in metal extraction in oil/water systems, Solvent Extr. Ion Exch. 29 (3) (2011) 363-383. [5] D. Ciceri, L.R. Mason, D.J.E. Harvie, J.M. Perera, G.W. Stevens, Extraction kinetics of Fe(III) by di-(2-ethylhexyl) phosphoric acid using a Y-Y shapedmicrofluidic device, Chem. Eng. Res. Des. 92 (3) (2014) 571-580. [6] Z. Zhou,W. Qin, S. Liang, Y. Tan, W. Fei, Recovery of lithium using tributyl phosphate in methyl isobutyl ketone and FeCl 3, Ind. Eng. Chem. Res. 51 (39) (2012) 12926-12932. [7] Z. Li,K.A.Mumford,K.H. Smith,Y.Wang, G.W. Stevens, Extractionof phenol by toluene in the presence of sodium hydroxide, Sep. Sci. Technol. 49 (18) (2014) 2913-2920. [8] V.S. Kislik, Solvent Extraction Classical and Novel Approaches, Elsevier, Oxford, 2012. [9] Industrial Scale Natural Products Extraction, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011. [10] P.K. Mamidipally, S.X. Liu, First approach on rice bran oil extraction using limonene, Eur. J. Lipid Sci. Technol. 106 (2) (2004) 122-125. [11] Z. Chemat-Djenni, M.A. Ferhat, V. Tomao, F. Chemat, Carotenoid extraction from tomato using a green solvent resulting from orange processing waste, J. Essent. Oil Bear. Plants 13 (2) (2010) 139-147. [12] S.F. Shen, K.H. Smith, S. Cook, S.E. Kentish, J.M. Perera, T. Bowser, G.W. Stevens, Phenol recovery with tributyl phosphate in a hollow fiber membrane contactor: experimental and model analysis, Sep. Purif. Technol. 69 (1) (2009) 48-56. [13] F. Wang, F. He, J. Zhao, N. Sui, L. Xu, H. Liu, Extraction and separation of cobalt(II), copper(II) and manganese(II) by Cyanex272, PC-88A and their mixtures, Sep. Purif. Technol. 93 (2012) 8-14. [14] World Health Organization, Indoor Air Quality: Organic Pollutants. Reports on a WHO Meeting, Euro Reports and Studies 111.; Copenhagen, 1989. [15] The European Chemicals Agency, http://echa.europa.eu/regulations/reach (Accessed on 31 October 2014). [16] J.L. Williams, Oil Price History and Analysis, http://www.wtrg.com/prices.htm (Accessed on 14 November 2014). [17] C.S.M. Pereira, V.M.T.M. Silva, A.E. Rodrigues, Ethyl lactate as a solvent: properties, applications and production processes-a review, Green Chem. 13 (10) (2011) 2658-2671. [18] Historical Crude Oil Price, http://www.infomine.com/investment/metal-prices/ crude-oil/all/ (Accessed on 31 October 2014). [19] J.H. Clark, Green chemistry: today (and tomorrow), Green Chem. 8 (1) (2006) 17-21. [20] F.M. Kerton, R. Marriott, Alternative Solvents for Green Chemistry, 2nd ed. Royal Society of Chemistry, Cambridge, 2013. [21] P.G. Jessop, Searching for green solvents, Green Chem. 13 (6) (2011) 1391-1398. [22] Y. Zhang, B.R. Bakshi, E.S. Demessie, Life cycle assessment of an ionic liquid versus molecular solvents and their applications, Environ. Sci. Technol. 42 (5) (2008) 1724-1730. [23] R.K. Henderson, C. Jimenez-Gonzalez, D.J.C. Constable, S.R. Alston, G.G.A. Inglis, G. Fisher, J. Sherwood, S.P. Binks, A.D. Curzons, Expanding GSK's solvent selection guide-Embedding sustainability into solvent selection starting atmedicinal chemistry, Green Chem. 13 (4) (2011) 854-862. [24] P.J. Dunn, A.Wells, M.T. Williams, Green Chemistry in the Pharmaceutical Industry, Wiley, 2010. [25] P.T. Anastas, J.C. Warner, Green chemistry : Theory and practice, Oxford University Press, New York, 1998. [26] F. Chemat,M.A. Vian, G. Cravotto, Green extraction of natural products: concept and principles, Int. J. Mol. Sci. 13 (7) (2012) 8615-8627. [27] F.M. Kerton, R. Marriott, Renewable solvents, Alternative Solvents for Green Chemistry, 2nd ed.Royal Society of Chemistry, Cambridge 2013, pp. 97-117. [28] K. Srinivas, T.M. Potts, J.W. King, Characterization of solvent properties of methyl soyate by inverse gas chromatography and solubility parameters, Green Chem. 11 (10) (2009) 1581-1588. [29] L. Lomba, B. Giner, I. Bandres, C. Lafuente, M.a.R. Pino, Physicochemical properties of green solvents derived from biomass, Green Chem. 13 (8) (2011) 2062-2070. [30] S. Aparicio, R. Alcalde, The green solvent ethyl lactate: An experimental and theoretical characterization, Green Chem. 11 (1) (2009) 65-78. [31] J.I. Garcia, H. Garcia-Marin, J.A. Mayoral, P. Perez, Green solvents from glycerol. Synthesis and physico-chemical properties of alkyl glycerol ethers, Green Chem. 12 (3) (2010) 426-434. [32] G. Knothe, K.R. Steidley, Fatty acid alkyl esters as solvents: evaluation of the kauributanol value. comparison to hydrocarbons, dimethyl diesters, and other oxygenates, Ind. Eng. Chem. Res. 50 (7) (2011) 4177-4182. [33] J. Hu, Z. Du, Z. Tang, E. Min, Study on the solvent power of a new green solvent: Biodiesel, Ind. Eng. Chem. Res. 43 (24) (2004) 7928-7931. [34] Y. Gu, F. Jerome, Glycerol as a sustainable solvent for green chemistry, Green Chem. 12 (7) (2010) 1127-1138. [35] Y. Liu, L. Zhu, X. Sun, J. Chen, Toward greener separations of rare earths: Bifunctional ionic liquid extractants in biodiesel, AICHE J. 56 (9) (2010) 2338-2346. [36] F. Chemat, Terpenes as green solvents for natural products extraction, Alternative Solvents for Natural Products Extraction, Springer 2014, pp. 205-219. [37] S. Ramachandran, P. Fontanille, A. Pandey, C. Larroche, Gluconic acid: Properties, applications and microbial production, Food Technol. Biotechnol. 44 (2) (2006) 185-195. [38] A.N. Patel, Ternary phase equilibrium studies of furfural-water-solvent systems, J. Chem. Technol. Biotechnol. Chem. Technol. 34 (4) (1984) 161-164. [39] Wikipedia Furfuryl Alcohol, http://en.wikipedia.org/wiki/Furfuryl_alcohol (Accessed on 17 November 2014 (17 November)). [40] A. Apelblat, E. Manzurola, Solubility of suberic, azelaic, levulinic, glycolic, and diglycolic acids in water from 278.25 K to 361.35 K, J. Chem. Thermodyn. 22 (3) (1990) 289-292. [41] E. Christensen, A. Williams, S. Paul, S. Burton, R.L.McCormick, Properties and performance of levulinate esters as diesel blend components, Energy Fuel 25 (11) (2011) 5422-5428. [42] I.T. Horvath, H. Mehdi, V. Fabos, L. Boda, L.T. Mika, [Gamma]-valerolactone-a sustainable liquid for energy and carbon-based chemicals, Green Chem. 10 (2) (2008) 238-242. [43] Y. Román-Leshkov, C.J. Barrett, Z.Y. Liu, J.A. Dumesic, Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates, Nature 447 (7147) (2007) 982-985. [44] J. Sherwood, M. De bruyn, A. Constantinou, L. Moity, C.R. McElroy, T.J. Farmer, T. Duncan, W. Raverty, A.J. Hunt, J.H. Clark, Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents, Chem. Commun. 50 (68) (2014) 9650-9652. [45] D.S. Flett, J. Melling, M. Cox, Commercial solvent systems for inorganic processes, Handbook of Solvent Extraction, John Wiley & Sons, New York; Chichester; Brisbane; Toronto; Singapore 1983, pp. 629-647. [46] R.A. Clará, A.C.G. Marigliano, H.N. Sólimo, Density, viscosity, and refractive index in the range (283.15 to 353.15) K and vapor pressure of α-pinene, D-limonene, (±)-linalool, and citral over the pressure range 1.0 kPa atmospheric pressure, J. Chem. Eng. Data 54 (3) (2009) 1087-1090. [47] R. Francesconi, C. Castellari, F. Comelli, Densities, viscosities, refractive indices, and excess molar enthalpies of methyl tert-butyl ether + components of pine resins and essential oils at 298.15 K, J. Chem. Eng. Data 46 (6) (2001) 1520-1525. [48] R. Daniel, H. Xu, C. Wang, D. Richardson, S. Shuai, Combustion performance of 2,5-dimethylfuran blends using dual-injection compared to direct-injection in a SI engine, Appl. Energy 98 (2012) 59-68. [49] I. Fichan, C. Larroche, J.B. Gros, Water solubility, vapor pressure, and activity coefficients of terpenes and terpenoids, J. Chem. Eng. Data 44 (1) (1998) 56-62. [50] K.A. Kobe, T.S. Okabe, M.T. Ramstad, P.M. Huemmer, p-Cymene studies. VI. Vapor pressure of p-cymene, some of its derivatives and related compounds, J. Am. Chem. Soc. 63 (12) (1941) 3251-3252. [51] R.L. Schmidt, J.C. Randall, H.L. Clever, The surface tension and density of binary hydrocarbon mixtures: benzene-n-hexane and benzene-n-dodecane, J. Phys. Chem. 70 (12) (1966) 3912-3916. [52] M. Goral, B.Wisniewska-Goclowska, A. Skrzecz, I. Owczarek, K. Blazej, M.C. Haulait-Pirson, G.T. Hefter, F. Kapuku, Z. Maczynska, C.L. Young, IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater-revised and updated. Part 4. C6H14 hydrocarbons with water, J. Phys. Chem. Ref. Data 34 (2) (2005) 709-713. [53] R. Lun, D. Varhanickova, W.-Y. Shiu, D. Mackay, Aqueous solubilities and octanol-water partition coefficients of cymenes and chlorocymenes, J. Chem. Eng. Data 42 (5) (1997) 951-953. [54] C. Dejoye Tanzi, M. Abert Vian, C. Ginies, M. Elmaataoui, F. Chemat, Terpenes as green solvents for extraction of oil from microalgae, Molecules 17 (7) (2012) 8196-8205. [55] Ag Processing, Inc. http://www.agp.com/ (The official website of Ag Processing Inc (AGP®), Accessed on 12 January 2015). [56] S.V.D. Freitas, M.B. Oliveira, A.J. Queimada, M.J. Pratas, Á.S. Lima, J.A.P. Coutinho, Measurement and prediction of biodiesel surface tensions, Energy Fuel 25 (10) (2011) 4811-4817. [57] G. Tian, R. Daniel, H. Xu, DMF-a newbiofuel candidate, in:M.A.D.S. Bernardes (Ed.), Biofuel Production-Recent Developments and Prospects, InTech 2011, pp. 487-520. [58] C.M. Hansen, Hansen Solubility Parameters: A User's Handbook, 2nd ed. CRC Press, Boca Raton, 2007. [59] D.L.Williams, K.D. Kuklenz, A determination of the Hansen solubility parameters of hexanitrostilbene (HNS), Propellants, Explos., Pyrotech. 34 (5) (2009) 452-457. [60] M. Virot, V. Tomao, C. Ginies, F. Chemat, Total lipid extraction of food using D-limonene as an alternative to n-hexane, Chromatographia 68 (3-4) (2008) 311-313. [61] A. Filly, A.S. Fabiano-Tixier, Y. Lemasson, C. Roy, X. Fernandez, F. Chemat, Extraction of aroma compounds in blackcurrant buds by alternative solvents: theoretical and experimental solubility study, C. R. Chim. 17 (12) (2014) 1268-1275. [62] C. Dejoye Tanzi, M. Abert Vian, F. Chemat, New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process, Bioresour. Technol. 134 (2013) 271-275. [63] A.F.M. Barton, CRC Handbook of Solubility Parameters and Other Cohesion Parameters, CRC Press, 1991. [64] ASTM, Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels; D6751-08, 2008. [65] S.K. Hoekman, A. Broch, C. Robbins, E. Ceniceros, M. Natarajan, Review of biodiesel composition, properties, and specifications, Renew. Sust. Energ. Rev. 16 (1) (2012) 143-169. [66] B. Moser, Biodiesel production, properties, and feedstocks, in: D. Tomes, P. Lakshmanan, D. Songstad (Eds.), Biofuels, Springer, New York 2011, pp. 285-347. [67] S.K. Spear, S.T. Griffin, K.S. Granger, J.G. Huddleston, R.D. Rogers, Renewable plantbased soybean oil methyl esters as alternatives to organic solvents, Green Chem. 9 (2007) 1008-1015. [68] W. Wang, H. Yang, Y. Liu, H. Cui, J. Chen, The application of biodiesel and secoctylphenoxyacetic acid (CA-12) for the yttrium separation, Hydrometallurgy 109 (1-2) (2011) 47-53. [69] G. Xu, Theory of counter current extraction I. Equations of optimization and their applications, Acta Sci. Nat. Univ. Pekin. 1 (1978) 51-66. [70] J. Iqbal, C. Theegala, Microwave assisted lipid extraction from microalgae using biodiesel as co-solvent, Algal Res. 2 (1) (2013) 34-42. [71] R. Ciriminna, M. Lomeli-Rodriguez, P. Demma Cara, J.A. Lopez-Sanchez, M. Pagliaro, Limonene: a versatile chemical of the bioeconomy, Chem. Commun. 50 (97) (2014) 15288-15296. [72] C.G. Lopresto, F. Petrillo, A.A. Casazza, B. Aliakbarian, P. Perego, V. Calabrò, A nonconventional method to extract D-limonene from waste lemon peels and comparison with traditional Soxhlet extraction, Sep. Purif. Technol. 137 (2014) 13-20. [73] J.H. Clark, E.M. Fitzpatrick, D.J. Macquarrie, L.A. Pfaltzgraff, J. Sherwood, p-Cymenesulphonic acid: An organic acid synthesised from citrus waste, Catal. Today 190 (1) (2012) 144-149. [74] M.A. Ferhat, B.Y. Meklati, J. Smadja, F. Chemat, An improved microwave Clevenger apparatus for distillation of essential oils from orange peel, J. Chromatogr. A 1112 (1-2) (2006) 121-126. [75] M. Pourbafrani, G. Forgács, I.S. Horváth, C. Niklasson, M.J. Taherzadeh, Production of biofuels, limonene and pectin from citrus wastes, Bioresour. Technol. 101 (11) (2010) 4246-4250. [76] S.X. Liu, P.K. Mamidipally, Quality comparison of rice bran oil extracted with D-limonene and hexane, Cereal Chem. 82 (2) (2005) 209-215. [77] M.T. Golmakani, J.A.Mendiola, K. Rezaei, E. Ibáñez, Pressurized limonene as an alternative bio-solvent for the extraction of lipids from marine microorganisms, J. Supercrit. Fluids 92 (2014) 1-7. [78] M. Castro-Puyana, M. Herrero, I. Urreta, J. Mendiola, A. Cifuentes, E. Ibáñez, S. Suárez-Alvarez, Optimization of clean extraction methods to isolate carotenoids from themicroalga Neochloris oleoabundans and subsequent chemical characterization using liquid chromatography tandem mass spectrometry, Anal. Bioanal. Chem. 405 (13) (2013) 4607-4616. [79] M. Virot, V. Tomao, C. Ginies, F. Visinoni, F. Chemat, Green procedure with a green solvent for fats and oils' determination: microwave-integrated Soxhlet using limonene followed by microwave Clevenger distillation, J. Chromatogr. A 1196-1197 (0) (2008) 147-152. [80] S. Chemat, V. Tomao, F. Chemat, Limonene as green solvent for extraction of natural products, Green Solvents I, Springer 2012, pp. 175-186. |