[1] M.L. Luo, Q.Z.Wen, J.L. Liu, H.J. Liu, Z.L. Jia, Fabrication of SPES/nano-TiO2 composite ultrafiltration membrane and its anti-fouling mechanism, Chin. J. Chem. Eng. 19 (1) (2011) 45-51.[2] W.Q. Jin, N.P. Xu, J. Shi, Progress in inorganic nanofiltrationmembrane, Chin. J. Chem. Eng. 6 (1) (1998) 59-67.[3] J.C. Min, B.Q. Zhang, Numerical studies of mass transfer enhancement in a narrow membrane channel by rectangular winglets, Chin. J. Chem. Eng. 22 (10) (2014) 1061-1071.[4] Z. Cao, D.E. Wiley, A.G. Fane, CFD simulation of net-type turbulence promoters in a narrow channel, J. Membr. Sci. 185 (2) (2001) 157-176.[5] F. Li,W. Meindersma, A.B. de Haan, T. Reith, Optimization of commercial net spacers in spiral wound membrane modules, J. Membr. Sci. 208 (1-2) (2002) 289-302.[6] F. Li, W. Meindersma, A.B. de Haan, T. Reith, Experimental validation of CFD mass transfer simulations in flat channels with non-woven net spacers, J. Membr. Sci. 232 (1-2) (2004) 19-30.[7] J. Schwinge, P.R. Neal, D.E.Wiley, D.F. Fletcher, A.G. Fane, Spiralwoundmodules and spacers: Review and analysis, J. Membr. Sci. 242 (1-2) (2004) 129-153.[8] M. Park, J.H. Kim, Numerical analysis of spacer impacts on forward osmosis membrane process using concentration polarization index, J. Membr. Sci. 427 (2013) 10-20.[9] A.L. Ahmad, K.K. Lau,M.Z. Abu Bakar, Impact of different spacer filament geometries on concentration polarization control in narrow membrane channel, J. Membr. Sci. 262 (1-2) (2005) 138-152.[10] A.L. Ahmad, K.K. Lau, Impact of different spacer filaments geometries on 2D unsteady hydrodynamics and concentration polarization in spiral wound membrane channel, J. Membr. Sci. 286 (1-2) (2006) 77-92.[11] G.A. Fimbres-Weihs, D.E.Wiley, Review of 3D CFDmodeling of flow andmass transfer in narrow spacer-filled channels in membrane modules, Chem. Eng. Process. 49 (7) (2010) 759-781.[12] St. Tiggelbeck, N.K. Mitra, M. Fiebig, Comparison of wing-type vortex generators for heat transfer enhancement in channel flows, J. Heat Transf. 116 (4) (1994) 880-885.[13] K. Torii, K.M. Kwak, K. Nishino, Heat transfer enhancement accompanying pressureloss reduction with winglet-type vortex generators for fin-tube heat exchangers, Int. J. Heat Mass Transf. 45 (18) (2002) 3795-3801.[14] Y.G. Lei, Y.L. He, L.T. Tian, P. Chu, W.Q. Tao, Hydrodynamics and heat transfer characteristics of a novel heat exchanger with delta-winglet vortex generators, Chem. Eng. Sci. 65 (5) (2010) 1551-1562.[15] J.C. Min, W. Xu, Numerical prediction of the performance of the fins with punched delta winglets and the louver fins and their comparison, J. Enhanc. Heat Transf. 12 (4) (2005) 357-371.[16] A.Y. Turk, G.H. Junkhan, Heat transfer enhancement downstream of vortex generators on a flat plate, Heat Transfer 1986, Proc. 8th Int. Heat Transfer Conf., 6, Hemisphere, New York 1986, pp. 2903-2908.[17] M. Fiebig, Vortices generators for compact heat exchangers, J. Enhanc. Heat Transf. 2 (1-2) (1995) 43-62.[18] M. Fiebig, Vortices, generators and heat transfer, Chem. Eng. Res. Des. 76 (A2) (1998) 108-123.[19] G. Biswas, H. Chattopadhyay, A. Sinha, Augmentation of heat transfer by creation of streamwise longitudinal vortices using vortex generators, Heat Transf. Eng. 33 (4-5) (2012) 406-424.[20] M.N. de Pinho, V. Semiao, V. Geraldes, Integrated modeling of transport processes in fluid/nanofiltration membrane systems, J. Membr. Sci. 206 (1-2) (2002) 189-200.[21] K.K. Lau, M.Z. Abu Bakar, A.L. Ahmad, T. Murugesan, Feed spacer mesh angle: 3D modeling, simulation and optimization based on unsteady hydrodynamic in spiral wound membrane channel, J. Membr. Sci. 343 (1-2) (2009) 16-33.[22] V. Geraldes, V. Semiao, M.N. de Pinho, The effect of the ladder-type spacers configuration in NF spiral-wound modules on the concentration boundary layers disruption, Desalination 146 (1-3) (2002) 187-194.[23] J.C. Min, R.L. Webb, Numerical predictions of wavy fin coil performance, J. Enhanc. Heat Transf. 8 (3) (2001) 159-174. |