[1] S. Kenji, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, Carbon dioxide capture in metal-organic frameworks, Chem. Rev. 112(2012) 724-781. [2] Z.J. Zhang, Y.Q. Zhao, Q.H. Gong, Z. Li, J. Li, MOFs for CO2 capture and separation from flue gas mixtures:The effect of multifunctional sites on their adsorption capacity and selectivity, Chem. Commun. 49(2013) 653-661. [3] P.L. Llewellyn, S. Bourrelly, C. Serre, Y. Filinchuk, G. Férey, How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53†, Angew. Chem. Int. Ed. 118(2006) 7915-7918. [4] J.R. Li, J.L. Sculley, H.C. Zhou, Metal-organic frameworks for separations, Chem. Rev. 112(2012) 869-932. [5] S. Sircar, Publications on adsorption science and technology, Adsorption 6(2000) 359-365. [6] J.F. Yang, J.M. Li, W. Wang, L.B. Li, J.P. Li, Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-membered ring hydrophobic microporous high-silica zeolites:DDR, silicalite-1, and beta, Ind. Eng. Chem. Res. 52(2013) 17856-17864. [7] S. Sircar, Application of gas separation by adsorption for the future, Adsorpt. Sci. Technol. 19(2001) 347-366. [8] T. Fukushima, S. Horike, Y. Inubushi, K. Nakagawa, Y. Kubota, M. Takata, S. Kitagawa, Solid solutions of soft porous coordination polymers:Fine-tuning of gas adsorption properties, Angew. Chem. Int. Ed. 49(2010) 4820-4824. [9] H. Sato, W. Kosaka, R. Matsuda, A. Hori, Y. Hijikata, R.V. Belosludov, S. Sakaki, M. Takata, S. Kitagawa, Self-accelerating CO sorption in a soft nanoporous crystal, Science 343(2014) 167-170. [10] L.B. Li, J.F. Yang, Q. Zhao, J.P. Li, One-dimensional interpenetrated coordination polymers showing step gas sorption properties, CrystEngComm 15(2013) 1689-1692. [11] A. Kondo, N. Kojima, H. Kajiro, H. Noguchi, Y. Hattori, F. Okino, K. Maeda, T. Ohba, K. Kaneko, H. Kanoh, Gas adsorption mechanism and kinetics of an elastic layerstructured metal-organic framework, J. Phys. Chem. C 116(2012) 4157-4162. [12] C.Y. Lee, Y.S. Bae, N.C. Jeong, O.K. Farha, A.A. Sarjeant, C.L. Stern, P. Nickias, R.Q. Snurr, J.T. Hupp, S.T. Nguyen, Kinetic separation of propene and propane in metal organic frameworks:Controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios, J. Am. Chem. Soc. 133(2011) 5228-5231. [13] Y. Zhao, H. Wu, T.J. Emge, Q. Gong, N. Nijem, Y.J. Chabal, L. Kong, D.C. Langreth, H. Liu, H. Zeng, J. Li, Enhancing gas adsorption and separation capacity through ligand functionalization of microporous metal-organic framework structures, Chem. Eur. J. 17(2011) 5101-5109. [14] T.A. Makal, A.A. Yakovenko, H.C. Zhou, Isomerism in metal-organic frameworks:Framework isomers, J. Phys. Chem. Lett. 2(14) (2011) 1682-1689. [15] L. Carlucci, N. Cozzi, G. Ciani, M. Moret, D.M. Proserpio, S. Rizzato, A threedimensional nanoporous flexible network of 'square-planar' copper(II) centres with an unusual topology, Chem. Commun. 13(2002) 1354-1355. [16] A. Kondo, H. Noguchi, L. Carlucci, D.M. Proserpio, G. Ciani, H. Kajiro, T. Ohba, H. Kanoh, K. Kaneko, Double-step gas sorption of a two-dimensional metal-organic framework, J. Am. Chem. Soc. 129(2007) 12362-12363. [17] A. Kondo, H. Kajiro, H. Noguchi, L. Carlucci, D.M. Proserpio, G. Ciani, K. Kato, M. Takata, H. Seki, M. Sakamoto, Y. Hattori, F. Okino, K. Maeda, T. Ohba, K. Kaneko, H. Kanoh, Super flexibility of a 2D Cu-based porous coordination framework on gas adsorption in comparison with a 3D framework of identical composition:Framework dimensionality-dependent gas adsorptivities, J. Am. Chem. Soc. 133(2011) 10512-10522. [18] H. Kajiro, A. Kondo, K. Kaneko, H. Kanoh, Flexible two-dimensional square-grid coordination polymers:Structures and functions, Int. J. Mol. Sci. 11(2010) 3803-3845. [19] A. Kondo, K. Maeda, Anisotropic thermal expansion of a 3D metal-organic framework with hydrophilic and hydrophobic pores, J. Solid State Chem. 221(2015) 126-131. [20] T.D. Tran, Molecular simulation of carbon dioxide capture on elastic layered metal-organic framework adsorbents, University of Michigan, 2012. [21] L.B. Li, J.F. Yang, J.M. Li, Y. Chen, J.P. Li, Separation of CO2/CH4 and CH4/N2 mixtures by M/DOBDC:A detailed dynamic comparison with MIL-100(Cr) and activated carbon, Microporous Mesoporous Mater. 198(2014) 236-246. [22] J.F. Yang, R. Krishna, J.M. Li, J.P. Li, Experiments and simulations on separating a CO2/CH4 mixture using K-KFI at low and high pressures, Microporous Mesoporous Mater. 184(2014) 21-27. [23] J.F. Yang, Q.H. Yu, Q. Zhao, J.M. Liang, J.X. Dong, J.P. Li, Adsorption CO2, CH4 and N2 on two different spacing flexible layer MOFs, Microporous Mesoporous Mater. 161(2012) 154-159. [24] T.K. Maji, R. Matsuda, S. Kitagawa, A flexible interpenetrating coordination framework with a bimodal porous functionality, Nat. Mater. 6(2007) 142-148. [25] T.L. Hill, Statistical mechanics of adsorption. V. Thermodynamics and heat of adsorption, J. Chem. Phys. 17(1949) 520-535. [26] R. Kitaura, K. Seki, G. Akiyama, S. Kitagawa, Porous coordination-polymer crystals with gated channels specific for supercritical gases, Angew. Chem. Int. Ed. 42(2003) 428-431. [27] A.L. Myers, Equation of state for adsorption of gases and their mixtures in porous materials, Adsorption 9(2003) 9-16. [28] Y. He, R. Krishna, B. Chen, Metal-organic frameworks with potential for energyefficient adsorptive separation of light hydrocarbons, Energy Environ. Sci. 5(2012) 9107. [29] J.K. Syers, M.G. Browman, G.W. Smillie, Phosphate sorption by soils evaluated by the Langmuir adsorption equation, Soil Sci. Soc. Am. J. 37(1973) 358-363. [30] J.M. Li, J.F. Yang, L.B. Li, J.P. Li, Separation of CO2/CH4 and CH4/N2 mixtures using MOF-5 and Cu3(BTC)2, J. Energy Chem. 23(4) (2014) 453-460. |