[1] M. Pottmann, R.K. Pearson, Block-oriented NARMAX models with output multiplicities, AIChE J. 44(1) (1998) 131-140. [2] J.M. Böling, D.E. Seborg, J.P. Hespanha, Multi-model adaptive control of a simulated pH neutralization process, Control. Eng. Pract. 15(6) (2007) 663-672. [3] J.K. Gruber, D.R. Ramirez, D. Limon, T. Alamo, Computationally efficient nonlinear Min-Max Model Predictive Control based on Volterra series models-Application to a pilot plant, J. Process Control 23(4) (2013) 543-560. [4] C.X. Yang, X.F. Yan, A fuzzy-based adaptive genetic algorithm and its case study in chemical engineering, Chin. J. Chem. Eng. 19(2) (2011) 299-307. [5] A. KhazaiePoul, M. Soleimani, S. Salahi, Solubility prediction of disperse dyes in supercritical carbon dioxide and ethanol as co-solvent using neural network, Chin. J. Chem. Eng. 24(4) (2016) 491-498. [6] P. Wang, C. Yang, X. Tian, D. Huang, Adaptive nonlinear model predictive control using an on-line support vector regression updating strategy, Chin. J. Chem. Eng. 22(7) (2014) 774-781. [7] F. Giri, E.W. Bai, Block-oriented nonlinear system identification, Springer, London, 2010. [8] M. Ławryńczuk, Nonlinear predictive control for Hammerstein-Wiener systems, ISA Trans. 55(2015) 49-62. [9] H. Duwaish, M. Karim, V. Chandrasekar, Use of multilayer feedforward neural networks in identification and control of Wiener model, IEE Proc. Control Theory Appl. 143(3) (1996) 255-258. [10] S. Norquay, A. Palazogu, J. Romagnoli, Model predictive control based on Wiener models, Chem. Eng. Sci. 53(1) (1998) 75-84. [11] A. Kalafatis, L.Wang,W. Cluett, Linearizing feedforward-feedback control of pH processes based on the Wiener model, J. Process Control 15(2005) 103-112. [12] Z. Zhusubaliyev, A.Medvedev, M. Silva, Bifurcation analysis of PID-controlled neuromuscular blockade in closed-loop anesthesia, J. Process Control 25(2015) 152-163. [13] M. Ławryńczuk, Computationally efficient nonlinear predictive control based on neural Wiener models, Neurocomputing 74(2010) 401-417. [14] H. Bloemen, C. Chou, T. van den Boom, V. Verdult, M. Verhaegen, T. Backx, Wiener model identification and predictive control for dual composition control of a distillation column, J. Process Control 11(6) (2001) 601-620. [15] H. Zhang, G. Chen, Z. Chen, A novel dual-mode predictive control strategy for constrainedWiener systems, Int. J. Robust Nonlinear Control 20(9) (2010) 975-986. [16] S. Biagiola, J. Figueroa, Robust model predictive control of Wiener systems, Int. J. Control. 84(3) (2011) 432-444. [17] F. Khani, M. Haeri, Robust model predictive control of nonlinear processes represented by Wiener or Hammerstein models, Chem. Eng. Sci. 129(2015) 223-231. [18] K. Kim, E. Ríos-Patrónc, R. Braatza, Robust nonlinear internal model control of stable Wiener systems, J. Process Control 22(2012) 1468-1477. [19] G. Gregorčič, G. Lightbody, Nonlinear model-based control of highly nonlinear processes, Comput. Chem. Eng. 34(2010) 1268-1281. [20] G. Pajunen, Adaptive control of Wiener type-nonlinear systems, Automatica 28(4) (1992) 781-785. [21] J. Figueroa, J. Cousseau, S.Werner, T. Laakso, Adaptive control of aWiener type system:application of a pH neutralization reactor, Int. J. Control. 80(2) (2007) 231-240. [22] J. Peng, R. Dubay, J. Hernandez, M. Abu-Ayyad, A Wiener neural network-based identification and adaptive generalized predictive control for nonlinear SISO systems, Ind. Eng. Chem. Res. 50(12) (2011) 7388-7397. [23] B. Zhang, Z.Z. Mao, Adaptive control of stochastic Hammerstein-Wiener non-linear systems with measurement noise, Int. J. Syst. Sci. 47(1) (2016) 162-178. [24] D.W. Clarke,M.A. Phil, P.J. Gawthrop, Self-tuning controller, Proc. Inst. Electr. Eng. 122(1975) 929-934. [25] Y. Fu, T.Y. Chai, Indirect self-tuning control using multiple models for non-affine nonlinear systems, Int. J. Control. 84(6) (2011) 1031-1040. [26] G.C. Goodwin, K.S. Sin, Adaptive filtering, prediction and control, Prentice Hall, Englewood Cliffs, New Jersey, 1984. [27] A. Hagenblad, L. Ljung, A. Wills, Maximum likelihood identification of Wiener models, Automatica 44(2008) 2697-2705. [28] T. Wigren, Recursive prediction error identification using the nonlinear Wiener model, Automatica 29(4) (1993) 1011-1025. [29] Y. Fang, T. Chow, Orthogonal wavelet neural networks applying to identification of Wiener model, IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(4) (2000) 591-593. [30] G. Lightbody, G. Irwin, Direct neural model reference adaptive control, IEE Proc. Control Theory Appl. 142(1) (1995) 31-43. [31] S. Ge, C. Hang, T. Zhang, Nonlinear adaptive control using neural networks and its application to CSTR systems, J. Process Control 9(1998) 313-323. [32] J. Hahn, T.F. Edgar, A gramian based approach to nonlinearity quantification and model classification, Ind. Eng. Chem. Res. 40(2001) 5724-5731. [33] L.A. Aguirre, M.C.S. Coelho, M.V. Corrêa, On the interpretation and practice of dynamical differences between Hammerstein and Wiener models, IEE Proc. Control Theory Appl. 152(4) (2005) 349-356. [34] C. Kravaris, S. Palanki, Robust nonlinear state feedback under structured uncertainty, AIChE J. 34(7) (1988) 1119-1127. [35] Y. Wang, D. Zhou, F. Gao, Generalized predictive control of linear systemswith actuator arrearage faults, J. Process Control 19(2009) 803-815. [36] Z. Zou, D. Zhao, X. Liu, Y. Guo, C. Guan,W. Feng, N. Guo, Pole-placement self-tuning control of nonlinear Hammerstein system and its application to pH process control, Chin. J. Chem. Eng. 23(8) (2015) 1364-1368. [37] P. Cao, X. Luo, Soft sensor model derived from Wiener model structure:modeling and identification, Chin. J. Chem. Eng. 22(5) (2014) 538-548. [38] Y.Wang, X. Pang, Z. Piao, J. Fang, J. Fu, T. Chai, Intelligent decoupling PID control for the forced-circulation evaporation system, Chin. J. Chem. Eng. 23(12) (2015) 2075-2086. [39] Q. Li, D. Li, L. Cao, Closed-loop identification of systems using hybrid box-Jenkins structure and its application to PID tuning, Chin. J. Chem. Eng. 23(12) (2015) 1997-2004. |