[1] Z. Liu, G. Lu, Y. Guo, Y. Wang, Y. Guo, Catalytic performance of La1-xErxCoO3 perovskite for the deoxidization of coal bed methane and role of erbium in a catalyst, Catal. Sci. Technol. 1(6) (2011) 1006-1012. [2] I. Karakurt, G. Aydin, K. Aydiner,Mine ventilation air methane as a sustainable energy source, Renew. Sust. Energ. Rev. 15(2) (2011) 1042-1049. [3] S. Su, H. Chen, P. Teakle, S. Xue, Characteristics of coal mine ventilation air flows, J. Environ. Manag. 86(1) (2008) 44-62. [4] M. Santhosh Kumar, A. Eyssler, P. Hug, N. van Vegten, A. Baiker, A. Weidenkaff, D. Ferri, Elucidation of structure-activity relationships of model three way catalysts for the combustion of methane, Appl. Catal. B Environ. 94(1-2) (2010) 77-84. [5] C. Jiménez-Borja, F. Dorado, A. de Lucas-Consuegra, J.M. García-Vargas, J.L. Valverde, Complete oxidation of methane on Pd/YSZ and Pd/CeO2/YSZ by electrochemical promotion, Catal. Today 146(3-4) (2009) 326-329. [6] Z. Li, J. Gao, X. Xing, S.Wu, S. Shuang, C. Dong, M.C. Paau,M.M.F. Choi, Synthesis and characterization of n-alkylamine-stabilized palladium nanoparticles for electrochemical oxidation of methane, J. Phys. Chem. C 114(2) (2009) 723-733. [7] B. Kucharczyk, Activity of monolithic Pd/Al2O3 catalysts in the combustion of mine ventilation air methane, Pol. J. Chem. Technol. 13(4) (2011) 57-62. [8] J. Zhang, Z. Lei, J. Li, B. Chen, Simulation of a reverse flow reactor for the catalytic combustion of lean methane emissions, Chin. J. Chem. Eng. 22(8) (2014) 843-853. [9] A. Gannouni, B. Albela, M.S. Zina, L. Bonneviot, Metal dispersion, accessibility and catalytic activity inmethane oxidation of mesoporous templated aluminosilica supported palladium, Appl. Catal. A Gen. 464-465(0) (2013) 116-127. [10] F. Matei, C. Jiménez-Borja, J. Canales-Vázquez, S. Brosda, F. Dorado, J.L. Valverde, D. Ciuparu, Enhanced electropromotion of methane combustion on palladium catalysts deposited on highly porous supports, Appl. Catal. B Environ. 132-133(0) (2013) 80-89. [11] H. Najjar, H. Batis, J.-F. Lamonier, O.Mentré, J.-M. Giraudon, Effect of praseodymium and europium doping in La1-xLnxMnO3+δ (Ln:Pr or Eu, 0 ≤ x ≤ 1) perosvkite catalysts for total methane oxidation, Appl. Catal. A Gen. 469(0) (2014) 98-107. [12] S. Kim, D.W. Lee, J.Y. Lee, H.J. Eom, H.J. Lee, I.H. Cho, K.Y. Lee, Catalytic combustion of methane in simulated PSA offgas over Mn-substituted La-Sr-hexaaluminate (LaxSr1-xMnAl11O19), J. Mol. Catal. A Chem. 335(1-2) (2011) 60-64. [13] S. Thaicharoensutcharittham, V. Meeyoo, B. Kitiyanan, P. Rangsunvigit, T. Rirksomboon, Catalytic combustion of methane over NiO/Ce0.75Zr0.25O2 catalyst, Catal. Commun. 10(5) (2009) 673-677. [14] A. Eyssler, A.Winkler, P. Mandaliev, P. Hug, A.Weidenkaff, D. Ferri, Influence of thermally induced structural changes of 2 wt% Pd/LaFeO3 onmethane combustion activity, Appl. Catal. B Environ. 106(3-4) (2011) 494-502. [15] Y. Zhang, Z. Qin, G. Wang, H. Zhu, M. Dong, S. Li, Z. Wu, Z. Li, Z. Wu, J. Zhang, T. Hu, W. Fan, J. Wang, Catalytic performance of MnOx-NiO composite oxide in leanmethane combustion at low temperature, Appl. Catal. B Environ. 129(0) (2013) 172-181. [16] Y. Zheng, Z. Hu, H. Huang, W. Ji, M. Sun, C. Chen, Synthesis and characterization of nanometer Ce0.75Zr0.25O2 powders by solid-state chemical reaction method, J. Nanomater. (2011) (2011) 1-7. [17] J.T. Jang, K.J. Yoon, J.W. Bae, G.Y. Han, Cyclic production of syngas and hydrogen through methane-reforming and water-splitting by using ceria-zirconia solid solutions in a solar volumetric receiver-reactor, Sol. Energy 109(2014) 70-81. [18] K. Maeda, K. Domen, Preparation of BaZrO3-BaTaO2N solid solutions and the photocatalytic activities for water reduction and oxidation under visible light, J. Catal. 310(2014) 67-74. [19] D. Spassky, S. Omelkov, H. Mägi, V. Mikhailin, A. Vasil'ev, N. Krutyak, I. Tupitsyna, A. Dubovik, A. Yakubovskaya, A. Belsky, Energy transfer in solid solutions ZnxMg1-xWO4, Opt. Mater. 36(10) (2014) 1660-1664. [20] Q. Pan, J. Peng, T. Sun, D. Gao, S.Wang, S.Wang, CO2 methanation on Ni/Ce0.5Zr0.5O2 catalysts for the production of synthetic natural gas, Fuel Process. Technol. 123(0) (2014) 166-171. [21] Y. Cao, R. Ran, X.Wu, B. Zhao, J.Wan, D. Weng, Comparative study of ageing condition effects on Pd/Ce0.5Zr0.5O2 and Pd/Al2O3 catalysts:Catalytic activity, palladium nanoparticle structure and Pd-support interaction, Appl. Catal. A Gen. 457(0) (2013) 52-61. [22] Y. Zuo, X. Huang, L. Li, G. Li, An ultra-stable nanosized Ce0.9Fe0.1O2 solid solution with an excellent catalytic performance towards CH4 oxidation, J. Mater. Chem. A 1(2) (2013) 374-380. [23] L. Lan, S. Chen, M. Zhao, M. Gong, Y. Chen, The effect of synthesis method on the properties and catalytic performance of Pd/Ce0.5Zr0.5O2-Al2O3 three-way catalyst, J. Mol. Catal. A Chem. 394(2014) 10-21. [24] R.T. Guo, Y. Zhou,W.G. Pan, J.N. Hong, W.L. Zhen, Q. Jin, C.G. Ding, S.Y. Guo, Effect of preparation methods on the performance of CeO2/Al2O3 catalysts for selective catalytic reduction of NO with NH3, J. Ind. Eng. Chem. 19(6) (2013) 2022-2025. [25] H. Eltejaei, H. Reza Bozorgzadeh, J. Towfighi, M. Reza Omidkhah, M. Rezaei, R. Zanganeh, A. Zamaniyan, A. Zarrin Ghalam, Methane dry reforming on Ni/Ce0.75Zr0.25O2-MgAl2O4 and Ni/Ce0.75Zr0.25O2-γ-alumina:effects of support composition and water addition, Int. J. Hydrog. Energy 37(5) (2012) 4107-4118. [26] J.Y.Z. Chiou, C.L. Lai, S.W. Yu, H.H. Huang, C.L. Chuang, C.B.Wang, Effect of Co, Fe and Rh addition on coke deposition over Ni/Ce0.5Zr0.5O2 catalysts for steam reforming of ethanol, Int. J. Hydrog. Energy 39(35) (2014) 20689-20699. [27] D.H. Prasad, H.Y. Jung, H.G. Jung, B.K. Kim, H.W. Lee, J.H. Lee, Single step synthesis of nano-sized NiO-Ce0.75Zr0.25O2 composite powders by glycine nitrate process, Mater. Lett. 62(4-5) (2008) 587-590. [28] S. Pengpanich, V. Meeyoo, T. Rirksomboon, K. Bunyakiat, Catalytic oxidation of methane over CeO2-ZrO2mixed oxide solid solution catalysts prepared via urea hydrolysis, Appl. Catal. A Gen. 234(1-2) (2002) 221-233. [29] F. Yang, Z. Ning, H. Liu, Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China, Fuel 115(2014) 378-384. [30] Y. Liu, S. Wang, D. Gao, T. Sun, C. Zhang, S. Wang, Influence of metal oxides on the performance of Pd/Al2O3 catalysts for methane combustion under lean-fuel conditions, Fuel Process. Technol. 111(0) (2013) 55-61. [31] M.M. Fiuk, A. Adamski, Activity of MnOx-CeO2 catalysts in combustion of low concentrated methane, Catal. Today 257(2015) 131-135. [32] J. Li, R. Hu, J. Zhang, W. Meng, Y. Du, Y. Si, Z. Zhang, Influence of preparation methods of La2CoMnO6/CeO2 on the methane catalytic combustion, Fuel 178(2016) 148-154. [33] A. Urdă, I. Popescu, T. Cacciaguerra, N. Tanchoux, D. Tichit, I.-C. Marcu, Total oxidation of methane over rare earth cation-containing mixed oxides derived from LDH precursors, Appl. Catal. A Gen. 464-465(0) (2013) 20-27. [34] M. Hoffmann, S. Kreft, G. Georgi, G. Fulda, M.-M. Pohl, D. Seeburg, C. Berger-Karin, E.V. Kondratenko, S. Wohlrab, Improved catalytic methane combustion of Pd/CeO2 catalysts via porous glass integration, Appl. Catal. B Environ. 179(2015) 313-320. [35] D.W. Jeong, W.J. Jang, J.O. Shim, H.S. Roh, I.H. Son, S.J. Lee, The effect of preparation method on the catalytic performance over superior MgO-promoted Ni-Ce0.8Zr0.2O2 catalyst for CO2 reforming of CH4, Int. J. Hydrog. Energy 38(31) (2013) 13649-13654. [36] R. Ding, C. Li, L.Wang, R. Hu, Biphasic intergrowth effects of La2MnNiO6-MgO composite oxide for methane catalytic combustion, Appl. Catal. A Gen. 464-465(0) (2013) 261-268. [37] J. Du, J.Wu, T. Guo, R. Zhao, J. Li, Catalytic performance of Mo2C supported on onionlike carbon for dehydrogenation of cyclohexane, RSC Adv. 4(2014) 53950-53953. [38] J. Du, R. Zhao, G. Jiao, The short-channel function of hollow carbon nanoparticles as support in the dehydrogenation of cyclohexane, Int. J. Hydrog. Energy 38(14) (2013) 5789-5795. |