[1] G.M. Whitesides, The origins and the future of microfluidics, Nature 442(7101) (2006) 368-373. [2] C. Neto, D.R. Evans, E. Bonaccurso, H.-J. Butt, V.S. Craig, Boundary slip in Newtonian liquids:A review of experimental studies, Rep. Prog. Phys. 68(12) (2005) 2859. [3] K. Watanabe, Y. Udagawa, H. Udagawa, Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall, J. Fluid Mech. 381(1999) 225-238. [4] J.P. Rothstein, Slip on superhydrophobic surfaces, Annu. Rev. Fluid Mech. 42(2010) 89-109. [5] D.R. Reyes, D. Iossifidis, P.-A. Auroux, A. Manz, Micro total analysis systems. 1. Introduction, theory, and technology, Anal. Chem. 74(12) (2002) 2623-2636. [6] R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, F. Toschi, Mesoscopic two-phase model for describing apparent slip in micro-channel flows, EPL (Europhys. Lett.) 74(4) (2006) 651. [7] D.C. Tretheway, C.D. Meinhart, Apparent fluid slip at hydrophobic microchannel walls, Phys. Fluids 14(3) (2002) L9-L12. [8] M. Asfer, P.K. Panigrahi, Boundary Slip of Liquids, in Encyclopedia of Microfluidics and Nanofluidics, Springer, 20141-12. [9] P. Joseph, P. Tabeling, Direct measurement of the apparent slip length, Phys. Rev. E 71(3) (2005) 035303. [10] J. Koplik, J.R. Banavar, J.F. Willemsen, Molecular dynamics of fluid flow at solid surfaces, Phys. Fluids A Fluid Dyn. 1(5) (1989) 781-794. [11] Y.-Y. Chen, H.-H. Yi, H.-B. Li, Boundary slip and surface interaction:A lattice Boltzmann simulation, Chin. Phys. Lett. 25(1) (2008) 184. [12] J.-T. Cheng, N. Giordano, Fluid flow through nanometer-scale channels, Phys. Rev. E 65(3) (2002) 031206. [13] J.S. Lee, G.H. Gu, H. Kim, K.S. Jeong, J. Bae, J.S. Suh, Growth of carbon nanotubes on anodic aluminum oxide templates:Fabrication of a tube-in-tube and linearly joined tube, Chem. Mater. 13(7) (2001) 2387-2391. [14] H.-C. Wu, W.-S. Hwang, H.-J. Lin, Development of a three-dimensional simulation system for micro-inkjet and its experimental verification, Mater. Sci. Eng. A 373(1) (2004) 268-278. [15] X.-J. Fan, N. Phan-Thien, N.T. Yong, X. Diao, Molecular dynamics simulation of a liquid in a complex nano channel flow, Phys. Fluids 14(3) (2002) 1146-1153. [16] I. Hanasaki, A. Nakatani, Water flow through carbon nanotube junctions as molecular convergent nozzles, Nanotechnology 17(11) (2006) 2794. [17] L. Guo, S. Chen, M.O. Robbins, Slip boundary conditions over curved surfaces, Phys. Rev. E 93(1) (2016) 013105. [18] M. Cieplak, J. Koplik, J.R. Banavar, Nanoscale fluid flows in the vicinity of patterned surfaces, Phys. Rev. Lett. 96(11) (2006) 114502. [19] D. Byun, V. dat Nyugen, J. Kim, H.S. Ko, Free surface transition and momentum augmentation of liquid flow in micro/nano-scale channels with hydrophobic and hydrophilic surfaces, J. Mech. Sci. Technol. 22(12) (2008) 2554-2562. [20] Y. Gogotsi, J.A. Libera, A. Güvenç-Yazicioglu, C.M. Megaridis, In situ multiphase fluid experiments in hydrothermal carbon nanotubes, Appl. Phys. Lett. 79(7) (2001) 1021-1023. [21] R.W. Johnson, Handbook of Fluid Dynamics, CRC Press, USA, 1998. [22] B.-Y. Cao, J. Sun, M. Chen, Z.-Y. Guo, Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS:A review, Int. J. Mol. Sci. 10(11) (2009) 4638-4706. [23] J. Horbach, S. Succi, Lattice Boltzmann versus molecular dynamics simulation of nanoscale hydrodynamic flows, Phys. Rev. Lett. 96(22) (2006) 224503. [24] J. Harting, C. Kunert, H.J. Herrmann, Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels, EPL (Europhys. Lett.) 75(2) (2006) 328. [25] C. Kunert, J. Harting, On the effect of surfactant adsorption and viscosity change on apparent slip in hydrophobic microchannels, Prog. Comput. Fluid Dyn. Int. J. 8(1-4) (2008) 197-205. [26] L. Zhu, D. Tretheway, L. Petzold, C. Meinhart, Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann method, J. Comput. Phys. 202(1) (2005) 181-195. [27] R.-L. Zhang, Q.-F. Di, X.-L. Wang, W.-P. Ding, G. Wei, Numerical study of the relationship between apparent slip length and contact angle by lattice Boltzmann method, J. Hydrodyn. B 24(4) (2012) 535-540. [28] C. Kunert, J. Harting, Simulation of fluid flow in hydrophobic rough microchannels, Int. J. Comput. Fluid Dyn. 22(7) (2008) 475-480. [29] X. He, S. Chen, G.D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys. 146(1) (1998) 282-300. [30] Y. Qian, D. d'Humières, P. Lallemand, Lattice BGK models for Navier-Stokes equation, EPL (Europhys. Lett.) 17(6) (1992) 479. [31] D.T. Thorne, Lattice Boltzmann Modeling:An Introduction for Geoscientists and Engineers, Springer, 2006. [32] L. Chen, Q. Kang, Y. Mu, Y.-L. He, W.-Q. Tao, A critical review of the pseudopotential multiphase lattice Boltzmann model:Methods and applications, Int. J. Heat Mass Transf. 76(2014) 210-236. [33] X. Shan, Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models, Phys. Rev. E 73(4) (2006) 047701. [34] R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, F. Toschi, Mesoscopic modeling of a two-phase flow in the presence of boundaries:The contact angle, Phys. Rev. E 74(2) (2006) 021508. [35] H. Huang, D.T. Thorne, M.G. Schaap, M.C. Sukop, Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models, Phys. Rev. E 76(6) (2007) 066701. [36] J. Harting, C. Kunert, J. Hyvaluoma, Lattice Boltzmann simulations in microfluidics:Probing the no-slip boundary condition in hydrophobic, rough, and surface nanobubble laden microchannels, Microfluid. Nanofluid. 8(1) (2010) 1-10. [37] S. Schmieschek, Computer simulation of boundary effects and multiphase flows on the mesoscopic scale, Technische Universiteit, Eindhoven, 2015. [38] X. Shan, G. Doolen, Multicomponent lattice-Boltzmann model with interparticle interaction, J. Stat. Phys. 81(1-2) (1995) 379-393. [39] D.P. Ziegler, Boundary conditions for lattice Boltzmann simulations, J. Stat. Phys. 71(5-6) (1993) 1171-1177. [40] Z.-L. Guo, C.-G. Zheng, B.-C. Shi, Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method, Chin. Phys. 11(4) (2002) 366. [41] C. Navier, Memoirs de l'Academie Royale Des Sciences de l'Institut de France, vol. 1, Royale des Sciences de l'Institut de France, 1823. |