[1] H.C. Schwarzer, W. Peukert, Combined experimental/numerical study on the precipitation of nanoparticles, AIChE J. 50(2004) 3234-3247. [2] L. Gutierrez, L. Gomez, S. Irusta, M. Arruebo, J. Santamaria, Comparative study of the synthesis of silica nanoparticles in micromixer-microreactor and batch reactor systems, Chem. Eng. J. 171(2011) 674-683. [3] Y. Ying, G.W. Chen, Y.C. Zhao, S.L. Li, Q. Yuan, A high throughput methodology for continuous preparation of monodispersed nanocrystals in microfluidic reactors, Chem. Eng. J. 135(2008) 209-215. [4] J.F. Chen, J.Y. Zhang, Z.G. Shen, J. Zhong, J. Yun, Preparation and characterization of amorphous cefuroxime axetil drug nanoparticles with novel technology:Highgravity antisolvent precipitation, Ind. Eng. Chem. Res. 45(2006) 8723-8727. [5] Q.A. Wang, J.X. Wang, M. Li, L. Shao, J.F. Chen, L. Gu, Y.T. An, Large-scale preparation of barium sulphate nanoparticles in a high-throughput tube-in-tube microchannel reactor, Chem. Eng. J. 149(2009) 473-478. [6] B.K. Johnson, R.K. Prud'homme, Chemical processing and micromixing in confined impinging jets, AIChE J. 49(2003) 2264-2282. [7] S. Li, G.A. Gross, P.M. Günther, J.M. Köhler, Hydrothermal micro continuous-flow synthesis of spherical, cylinder-, star-and flower-like ZnO microparticles, Chem. Eng. J. 167(2011) 681-687. [8] J. Wagner, T. Kirner, G. Mayer, J. Albert, J.M. Köhler, Generation of metal nanoparticles in a microchannel reactor, Chem. Eng. J. 101(2004) 251-260. [9] T. Noël, S. Kuhn, A.J. Musacchio, K.F. Jensen, S.L. Buchwald, Suzuki-Miyaura crosscoupling reactions in flow:Multistep synthesis enabled by a microfluidic extraction, Angew. Chem. 123(2011) 6065-6068. [10] T. Ishizaka, A. Ishigaki, H. Kawanami, A. Suzuki, T.M. Suzuki, Dynamic control of gold nanoparticle morphology in a microchannel flow reactor by glucose reduction in aqueous sodium hydroxide solution, J. Colloid Interface Sci. 367(2012) 135-138. [11] M. Wojnicki, M. Luty-Błocho, J. Grzonka, K. Pacławski, K.J. Kurzydłowski, K. Fitzner, Micro-continuous flow synthesis of gold nanoparticles and integrated deposition on suspended sheets of graphene oxide, Chem. Eng. J. 225(2013) 597-606. [12] Y.J. Song, R.S. Li, Q.Q. Sun, P.Y. Jin, Controlled growth of Cu nanoparticles by a tubular microfluidic reactor, Chem. Eng. J. 168(2011) 477-484. [13] K. Watanabe, Y. Orimoto, K. Nagano, K. Yamashita, M. Uehara, H. Nakamura, T. Furuya, H. Maeda, Microreactor combinatorial system for nanoparticle synthesis with multiple parameters, Chem. Eng. Sci. 75(2012) 292-297. [14] S. Aljbour, T. Tagawa, H. Yamada, Ultrasound-assisted capillary microreactor for aqueous-organic multiphase reactions, Ind. Eng. Chem. Res. 15(2009) 829-834. [15] N. Kockmann, J. Kastner, P. Woias, Reactive particle precipitation in liquid microchannel flow, Chem. Eng. J. 135(2008) 110-116. [16] A. Abou-Hassan, R. Bazzi, V. Cabuil, Multistep continuous-flow microsynthesis of magnetic and fluorescent γ-Fe2O3@SiO2 core/shell nanoparticles, Angew. Chem. Int. Ed. 48(2009) 7180-7183. [17] A. Knauer, A. Csáki, W. Fritzsche, C.A. Serra, N. Leclerc, J.M. Köhler, Micro continuous flow-through synthesis of triangular silver nanoprisms and their incorporation in complexly composed polymer microparticles, Chem. Eng. J. 227(2013) 191-197. [18] J. Ju, C. Zeng, L. Zhang, N. Xu, Continuous synthesis of zeolite NaA in a microchannel reactor, Chem. Eng. J. 116(2006) 115-121. [19] Z.W. Liu, L. Guo, T.H. Huang, L.X. Wen, J.F. Chen, Experimental and CFD studies on the intensified micromixing performance of micro-impinging stream reactors built from commercial T-junctions, Chem. Eng. Sci. 119(2014) 124-133. [20] Z.W. Liu, Q.C. Zhang, L.X. Wen, J.F. Chen, Preparation of ultrafine manganese dioxide by micro-impinging stream reactors and its electrochemical properties, Can. J. Chem. Eng. 94(2016) 461-468. [21] Q.C. Zhang, Z.W. Liu, X.H. Zhu, L.X. Wen, Q.F. Zhu, K. Guo, J.F. Chen, Application of microimpinging stream reactors in the preparation of CuO/ZnO/Al2O3 catalysts for methanol synthesis, Ind. Eng. Chem. Res. 54(2015) 159-165. [22] P. Guichardon, L. Falk, Characterisation of micromixing efficiency by the iodide-iodate reaction system, part I:Experimental procedure, Chem. Eng. Sci. 55(2000) 4233-4243. [23] M.C. Fournier, L. Falk, J. Villermaux, A new parallel competing reaction system for assessing micromixing efficiency-Determination of micromixing time by a simple mixing model, Chem. Eng. Sci. 51(1996) 5187-5192. [24] M.C. Fournier, L. Falk, J. Villermaux, A new parallel competing reaction system for assessing micromixing efficiency-Experimental approach, Chem. Eng. Sci. 51(1996) 5053-5064. [25] J.R. Bourne, Comments on the iodide/iodate method for characterizing micromixing, Chem. Eng. J. 140(2008) 638-641. [26] A. Kölbl, V. Desplantes, L. Grundemann, S. Scholl, Kinetic investigation of the Dushman reaction at concentrations relevant to mixing studies in stirred tank reactors, Chem. Eng. Sci. 93(2013) 47-54. [27] A. Kölbl, S. Schmidt-Lehr, The iodide iodate reaction method:The choice of the acid, Chem. Eng. Sci. 65(2010) 1897-1901. [28] J.M. Commenge, L. Falk, Villermaux-Dushman protocol for experimental characterization of micromixers, Chem. Eng. Process. 50(2011) 979-990. [29] N. Baccar, R. Kieffer, C. Charcosset, Characterization of mixing in a hollow fiber membrane contactor by the iodide-iodate method:Numerical simulations and experiments, Chem. Eng. J. 148(2009) 517-524. [30] G. Pierrette, F. Laurent, V. Jacques, Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part Ⅱ:Kinetic study, Chem. Eng. Sci. 55(2000) 4245-4253. [31] A.D. Awtrey, R.E. Connick, The absorption spectra of I2, I3-, I-, IO3-, S4O62- and S2O32-. Heat of the reaction I3-=I2+=I-, J. Am. Chem. Soc. 73(1951) 1842-1843. [32] Y. Liu, R.O. Fox, CFD predictions for chemical processing in a confined impinging-jets reactor, AIChE J. 52(2006) 731-744. [33] E. Gavi, D.L. Marchisio, A.A. Barresi, CFD modelling and scale-up of confined impinging jet reactors, Chem. Eng. Sci. 62(2007) 2228-2241. [34] B. Andersson, R. Andersson, L. Hakansson, Computational Fluid Dynamics for Engineers, Cambridge University Press, 2011. [35] Z.D. Liu, Y.C. Lu, J.W. Wang, G.S. Luo, Mixing characterization and scaling-up analysis of asymmetrical T-shaped micromixer:Experiment and CFD simulation, Chem. Eng. J. 181(2012) 597-606. [36] FLUENT 6.3, User's Guide to FLUENT 6.3, Fluent Inc., 2006 [37] M. Wolfshtein, The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient, Int. J. Heat Mass Transf. 12(1969) 301-318. [38] FLUENT 6.3, Theory Guide to FLUENT 6.3, Fluent Inc., 2006 [39] M. Rahimi, N. Azimi, F. Parvizian, A.A. Alsairafi, Computational fluid dynamics modeling of micromixing performance in presence of microparticles in a tubular sonoreactor, Comput. Chem. Eng. 60(2014) 403-412. [40] Y. Han, J.J. Wang, X.P. Gu, L.F. Feng, Numerical simulation on micromixing of viscous fluids in a stirred-tank reactor, Chem. Eng. Sci. 74(2012) 9-17. [41] B.F. Magnussen, B.H. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Symp. Combust. 16(1977) 719-729. [42] A. Soleymani, E. Kolehmainen, I. Turunen, Numerical and experimental investigations of liquid mixing in T-type micromixers, Chem. Eng. J. 135(2008) S219-S228. [43] H.D. Spriggs, Comments on transition from laminar to turbulent flow, Ind. Eng. Chem. Fundam. 12(1973) 286-288. [44] K. Yang, Study on Micromixing and Gas-Liquid Mass Transfer Characteristic in Rotating Packed Bed, PhD Thesis, Beijing University of Chemical Engineering, China, 2010. [45] C. Li, Z.P. Li, Z.M. Gao, Micromixing characteristics of an opposed-jet reactor, J. Beijing Univ. Chem. Technol. (Nat. Sci. Ed.) 36(6) (2009) 1-3. [46] Q.A. Wang, J.X. Wang, L. Shao, Investigation of micromixing efficiency in a novel high-throughput microporous tube-in-tube microchannel reactor, Ind. Eng. Chem. Res. 48(2009) 5004-5009. [47] N. Kockmann, T. Kiefer, M. Engler, P. Woias, Convective mixing and chemical reactions in microchannels with high flow rate, Sensors Actuators B Chem. 117(2) (2006) 495-508. [48] Z.W. Liu, Mechanism of process intensifIcation in a micro-impinging stream reactor and its applications, PhD Thesis, Beijing University of Chemical Engineering, China, 2015. [49] H. Zhao, L. Shao, J.F. Chen, High-gravity process intensification technology and application, Chem. Eng. J. 156(3) (2010) 588-593. [50] C.I. Liu, D.J. Lee, Micromixing effects in a couette flow reactor, Chem. Eng. Sci. 54(1999) 2883-2888. |