[1] J. Räisänen, J.S. Ylhäisi, CO2-induced climate change in northern Europe:Cmip2 versus Cmip3 versus Cmip5, Clim. Dyn. 45(2014) 1-21. [2] P. Wu, J. Ridley, A. Pardaens, R. Levine, J. Lowe, The reversibility of CO2 induced climate change, Clim. Dyn. 45(2014) 1-10. [3] D.A. Wood, Carbon dioxide (CO2) handling and carbon capture utilization and sequestration (CCUS) research relevant to natural gas:A collection of published research (2009-2015), J. Nat. Gas Sci. Eng. 25(2015) A1-A9. [4] A. Azdarpour, M. Asadullah, E. Mohammadian, H. Hamidi, R. Junin, M.A. Karaei, A review on carbon dioxide mineral carbonation through pH-swing process, Chem. Eng. J. 61(2015) 615-630. [5] A.A. Olajire, A review of mineral carbonation technology in sequestration of CO2, J. Pet. Sci. Eng. 109(2013) 364-392. [6] S. Kodama, T. Nishimoto, N. Yamamoto, K. Yogo, K. Yamada, Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution, Energy 33(2008) 776-784. [7] S. Eloneva, Reduction of CO2 emissions by mineral carbonation:steelmaking slags as raw material with a pure calcium carbonate end product, Starch-Starke 60(2008) 61-69. [8] L.L. He, D.X. Yu, W.Z. Lv, J.Q. Wu, M.H. Xu, CO2 sequestration by indirect carbonation of high-calcium coal fly ash, Adv. Mater. Res. 726-731(2013) 2870-2874. [9] H. Jo, S.H. Park, Y.N. Jang, S.C. Chae, P.K. Lee, H.Y. Jo, Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions, Chem. Eng. J. 254(2014) 313-323. [10] M. Vučak, M.N. Pons, J. Perić, H. Vivier, Effect of precipitation conditions on the morphology of calcium carbonate:quantification of crystal shapes using image analysis, Powder Technol. 97(1998) 1-5. [11] S.H. Yong, G. Hadiko, M. Fuji, M. Takahashi, Crystallization and transformation of vaterite at controlled pH, J. Cryst. Growth 289(2006) 269-274. [12] I. Udrea, C. Capat, E.A. Olaru, R. Isopescu, M. Mihai, C.D. Mateescu, C. Bradu, Vaterite synthesis via gas-liquid route under controlled pH conditions, Ind. Eng. Chem. Res. 51(2012) 8185-8193. [13] S. Eloneva, S. Teir, J. Salminen, C.J. Fogelholm, R. Zevenhoven, Fixation of CO2 by carbonating calcium derived from blast furnace slag, Energy 33(2008) 1461-1467. [14] C.E. Weir, E.R. Lippincott, Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates, J. Res. Natl. Bur. Stand. Us 65A (1961). [15] A.A. Garrison, Infrared and Raman spectroscopy:methods and applications, TrAC Trends Anal. Chem. 15(5) (1996) XⅡ. [16] N.V. Vagenas, A. Gatsouli, C.G. Kontoyannis, Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy, Talanta 59(2003) 831-836. [17] C.G. Kontoyannis, N.V. Vagenas, Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy, Analyst 125(2000) 251-255. [18] Lehrbuch Der Allgemeinen Chemie, Von W. Ostwald. Ii. Band, Zweiter Teil, FÜ Nfte Lieferung. 23 Bogen Mit 237 Figuren. Verlag Von W. Engelmann, Leipzig. 1902. Preis 9 Mk, 1902907. [19] J. Gómez-Morales, J. Torrent-Burgués, R. Rodríguez-Clemente, Nucleation of calcium carbonate at different initial pH conditions, J. Cryst. Growth 169(1996) 331-338. [20] A.V. Radha, T.Z.F., Christopher E. Killian, P.U.P.A. Gilbert, Alexandra Navrotsky, Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate, Proc. Natl. Acad. Sci. 107(2010) 16438-16443. [21] Y.S. Han, G. Hadiko, M. Fuji, M. Takahashi, Factors affecting the phase and morphology of CaCO3 prepared by a bubbling method, J. Eur. Ceram. Soc. 26(2006) 843-847. [22] K. Gilbert, P.C. Bennett, W. Wolfe, T. Zhang, K.D. Romanak, CO2 solubility in aqueous solutions containing Na+, Ca2+, Cl-, SO42- and HCO3-:the effects of electrostricted water and ion hydration thermodynamics, Appl. Geochem. 67(2016) 59-67. |