[1] Annual Energy Outlook (AEO), Energy Information Administration (EIA), USA, 20091-5.[2] M. Gharaie, N. Zhang, M. Jobson, et al., Simultaneous optimization of CO2 emissions reduction strategies for effective carbon control in the process industries, Chem. Eng. Res. Des. 91(2013) 1483-1498.[3] K.F. Huang, I.A. Karimi, Simultaneous synthesis approaches for cost-effective heat exchanger networks, Chem. Eng. Sci. 98(2013) 231-245.[4] X. Cheng, X. Liang, Optimization principles for two-stream heat exchangers and two-stream heat exchanger networks, Energy 46(2012) 421-429.[5] M. Bogataj, Z. Kravanja, An alternative strategy for global optimization of heat exchanger networks, Appl. Therm. Eng. 43(2012) 75-90.[6] I.S. Han, Y.H. Lee, C. Han, Modeling and optimization of the condensing steam turbine network of a chemical plant, Ind. Eng. Chem. Res. 45(2006) 670-680.[7] T.M. Tveit, C.J. Fogelholm, Multi-period steam turbine network optimisation. Part Ⅱ:development of a multi-period MINLP model of a utility system, Appl. Therm. Eng. 26(2006) 1730-1736.[8] Y.L. Huang, L.T. Fan, Analysis of a work exchanger network, Ind. Eng. Chem. Res. 35(1996) 3528-3538.[9] G. Liu, H. Zhou, R. Shen, et al., A graphical method for integrating work exchange network, Appl. Energy 114(2014) 588-599.[10] J.Q. Deng, J.Q. Shi, Z.X. Zhang, et al., Thermodynamic analysis on work transfer process of two gas streams, Ind. Eng. Chem. Res. 49(2010) 12496-12502.[11] H. Zhou, G.L. Liu, X. Feng, Problem table method for work exchange network with efficiency considered, CIESC J. (Chin.) 62(2010) 1600-1605(in Chinese).[12] X. Cheng, X. Liang, Heat-work conversion optimization of one-stream heat exchanger networks, Energy 47(2012) 421-429.[13] M.W. Shin, D. Shin, S.H. Choi, et al., Optimization of the operation of boil-off gas compressors at a liquified natural gas gasification plant, Ind. Eng. Chem. Res. 46(2007) 6540-6545.[14] F.D. Nogal, J.K. Kim, S. Perry, et al., Optimal design of mixed refrigerant cycles, Ind. Eng. Chem. Res. 47(2008) 8724-8740.[15] F.D. Nogal, J.K. Kim, S.J. Perry, et al., Synthesis of mechanical driver and power generation configurations. Part 1:optimization framework, AICHE J. 56(2010) 2356-2376.[16] F.D. Nogal, J.K. Kim, S. Perry, et al., Synthesis of mechanical driver and power generation configurations, part 2:LNG applications, AICHE J. 56(2010) 2377-2389.[17] A. Aspelund, D.O. Berstad, T. Gundersen, An extended pinch analysis and design procedure utilizing pressure based exergy for sub-ambient cooling, Appl. Therm. Eng. 27(2007) 2633-2649.[18] A. Wechsung, A. Aspelund, T. Gundersen, et al., Synthesis of heat exchanger networks at sub-ambient conditions with compression and expansion of process streams, AICHE J. 57(2011) 2090-2108.[19] M.S. Razib, M.M.F. HasanI, A. Karimi, Optimal synthesis of compressor network, in:A.A. Linninger, M.M. El-Halwagi (Eds.),Proceeding of the 7th International Conference on the Foundations of Computer-Aided Process Design (FOCAPD 2009), Colorado, 2009, June 7-12, 2009.[20] M.S. Razib, M.M.F. Hasan, I.A. Karimi, Preliminary synthesis of work exchange networks, Comput. Chem. Eng. 37(2012) 62-77.[21] V.C. Onishi, M.A.S.S. Ravagnani, J.A. Caballero, Simultaneous synthesis of work exchange networks with heat integration, Chem. Eng. Sci. 112(2014) 87-107.[22] V.C. Onishi, M.A.S.S. Ravagnani, J.A. Caballero, Simultaneous synthesis of heat exchanger networks with pressure recovery:optimal integration between heat and work, AICHE J. 60(2014) 893-908.[23] M.Z. Stijepovic, A.I. Papadopoulos, P. Linke, et al., An exergy composite curves approach for the design of optimum multi-pressure organic rankine cycle processes, Energy 69(2014) 285-298.[24] M.A. Neseli, O. Ozgener, L. Ozgener, Energy and exergy analysis of electricity generation from natural gas pressure reducing stations, Energy Convers. Manag. 93(2015) 109-120.[25] J.R. Couper, W.R. Penney, J.R. Fair, et al., Chemical Process Equipment, Selection and Design, second ed. Elsevier, USA, 2010. |