[1] C.W. DeWitt, S.L. Leon, D.W. Allan, A.B. Donald, A.M. Simon, OMEGA:An improved gasoline blending system for Texaco, Interfaces 19(1) (1989) 85-101.[2] C.A. Mendez, I.E. Grossmann, I. Harjunkoski, P. Kabore, A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations, Comput. Chem. Eng. 30(4) (2005) 614-634.[3] J. Li, I. Karimi, Scheduling gasoline blending operations from recipe determination to shipping using unit slots, Ind. Eng. Chem. Res. 50(15) (2011) 9156-9174.[4] A. Singh, J. Forbes, P. Vermeer, S. Woo, Model-based real-time optimization of automotive gasoline blending operations, J. Process Control 10(1) (2000) 43-58.[5] P. Castillo, P. Castro, V. Mahalec, Global optimization of nonlinear blend-scheduling problems, Engineering 3(2) (2017) 188-201.[6] J. Pinto, M. Joly, L. Moro, Planning and scheduling models for refinery operations, Comput. Chem. Eng. 24(9-10) (2000) 2259-2276.[7] J. Cerda, P. Pautasso, D. Cafaro, A cost-effective model for the gasoline blend optimization problem, AICHE J. 62(9) (2016) 3002-3019.[8] T.Y. Chi, Solving of gasoline blending nonlinear nodel and oil online blending, Ph. D. Thesis, Dalian University of Technology, China, 2007.[9] N. Boland, T. Kalinowski, F. Rigterink, New multi-commodity flow formulations for the pooling problem, J. Glob. Optim. 66(4) (2016) 669-710.[10] H. Sherali, A. Alameddine, A new reformulation-linearization technique for bilinear programming problems, J. Glob. Optim. 2(4) (1992) 379-410.[11] H. Ryoo, N. Sahinidis, A branch-and-reduce approach to global optimization, J. Glob. Optim. 8(2) (1996) 107-138.[12] E.M.B. Smith, C.C. Pantelides, A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs, Comput. Chem. Eng. 23(4-5) (1999) 457-478.[13] M. Tawarmalani, N. Sahinidis, A polyhedral branch-and-cut approach to global optimization, Math. Program. 103(2) (2005) 225-249.[14] R. Misener, C. Floudas, ANTIGONE:Algorithms for continuous/integer global optimization of nonlinear equations, J. Glob. Optim. 59(2-3) (2014) 503-526.[15] T. Achterberg, SCIP:Solving constraint integer programs, Math. Program. Comput. 1(1) (2009) 1-41.[16] P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wachter, Branching and bounds tightening techniques for non-convex MINLP, Optim. Methods Softw. 24(4-5) (2009) 597-634.[17] W.I. Zangwill, The Piecewise Concave Function[J], Manag. Sci. 13(11) (1967) 900-912.[18] E. Smith, Global optimisation of nonconvex MINLPs, Comput. Chem. Eng. 21(1-2) (1997) 791-796.[19] H. Sherali, C. Tuncbilek, A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique, J. Glob. Optim. 2(1) (1992) 101-112.[20] A. Geoffrion, Objective function approximations in mathematical programming, Math. Program. 13(1) (1977) 23-37.[21] F. Güder, J. Morris, Optimal objective function approximation for separable convex quadratic programming, Math. Program. 67(1-3) (1994) 133-142.[22] C. Huang, An effective linear approximation method for separable programming problems, Appl. Math. Comput. 215(4) (2009) 1496-1506.[23] M. Lin, J. Carlsson, A review of piecewise linearization methods, Math. Probl. Eng. 2013(2013) 1-8.[24] M. Padberg, Approximating separable nonlinear functions via mixed zero-one programs, Oper. Res. Lett. 27(1) (2000) 1-5.[25] J. Forbes, T. Marlin, Model accuracy for economic optimizing controllers:The bias update case, Ind. Eng. Chem. Res. 33(8) (1994) 1919-1929.[26] W.C. Healy, C.W. Maassen, R.T. Peterson, A new approach to blending octanes, API Div. Refin. 39(1959) 132-192.[27] J.H. Gary, G.E. Handwerk, Petroleum Refining Technology and Economics, 2nd edition Marcel Dekker, New York, 1994.[28] X.R. He, Graphic I/O Petrochemical Industry Modeling System in Integration of Refining and Chemical Industry, China Petrochemical Press, Beijing, 200612-20(in Chinese). |