[1] |
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, et al., Electric field in atomically thin carbon films, Science 306(2004) 666-669.
|
[2] |
K.E. Whitener Jr., P.E. Sheehan, Graphene synthesis, Diam. Relat. Mater. 46(2014) 25-34.
|
[3] |
A. Charrier, A. Coati, T. Argunova, F. Thibaudau, Y. Garreau, R. Pinchaux, et al., Solidstate decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films, J. Appl. Phys. 92(2002) 2479-2484.
|
[4] |
C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, et al., Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B 108(2004) 19912-19916.
|
[5] |
E. Reich, Nobel document triggers debate, Nature 468(2010) 486.
|
[6] |
K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, et al., Towards wafersize graphene layers by atmospheric pressure graphitization of silicon carbide, Nat. Mater. 8(2009) 203-207.
|
[7] |
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324(2009) 1312-1314.
|
[8] |
S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5(2010) 574-578.
|
[9] |
J.D. Wood, S.W. Schmucker, A.S. Lyons, E. Pop, J.W. Lyding, Effects of polycrystalline cu substrate on graphene growth by chemical vapor deposition, Nano Lett. 11(2011) 4547-4554.
|
[10] |
J. Kwak, J.H. Chu, J.-K. Choi, S.-D. Park, H. Go, S.Y. Kim, et al., Near room-temperature synthesis of transfer-free graphene films, Nat. Commun. 3(2012) 645.
|
[11] |
T.O. Terasawa, K. Saiki, Growth of graphene on Cu by plasma enhanced chemical vapor deposition, Carbon 50(2012) 869-874.
|
[12] |
Y. Takatoshi, K. Jaeho, I. Masatou, H. Masataka, Low-temperature graphene synthesis using microwave plasma CVD, J. Phys. D. Appl. Phys. 46(2013) 063001
|
[13] |
Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications, Acc. Chem. Res. 46(2013) 2329-2339.
|
[14] |
H. Zhou, W.J. Yu, L. Liu, R. Cheng, Y. Chen, X. Huang, et al., Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene, Nat. Commun. 4(2013) 2096.
|
[15] |
J.H. Lee, E.K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim, J.Y. Lim, et al., Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium, Science 344(2014) 286-289.
|
[16] |
Z. Yan, Z. Peng, J.M. Tour, Chemical vapor deposition of graphene single crystals, Acc. Chem. Res. 47(2014) 1327-1337.
|
[17] |
T.H. Vo, M. Shekhirev, D.A. Kunkel, M.D. Morton, E. Berglund, L. Kong, et al., Large-scale solution synthesis of narrow graphene nanoribbons, Nat. Commun. 5(2014) 3189.
|
[18] |
P.B. Bennett, Z. Pedramrazi, A. Madani, Y.-C. Chen, D.G. de Oteyza, C. Chen, et al., Bottom-up graphene nanoribbon field-effect transistors, Appl. Phys. Lett. 103(2013), 253114..
|
[19] |
J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, et al., Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466(2010) 470-473.
|
[20] |
S. Hofmann, P. Braeuninger-Weimer, R.S. Weatherup, CVD-enabled graphene manufacture and technology, J. Phys. Chem. Lett. 6(2015) 2714-2721.
|
[21] |
G. Deokar, J. Avila, I. Razado-Colambo, J.L. Codron, C. Boyaval, E. Galopin, et al., Towards high quality CVD graphene growth and transfer, Carbon 89(2015) 82-92.
|
[22] |
S. Santangelo, G. Messina, A. Malara, N. Lisi, T. Dikonimos, A. Capasso, et al., Taguchi optimized synthesis of graphene films by copper catalyzed ethanol decomposition, Diam. Relat. Mater. 41(2014) 73-78.
|
[23] |
R. Papon, C. Pierlot, S. Sharma, S.M. Shinde, G. Kalita, M. Tanemura, Optimization of CVD parameters for graphene synthesis through design of experiments, Phys. Status Solidi B 5(2017) 254-260.
|
[24] |
C.Y. Chen, D. Dai, G.X. Chen, J.H. Hu, K. Nishimura, C.T. Lin, N. Jiang, Z.L. Zhan, Rapid growth single-layer graphene on the insulating substrates by thermal CVD, Appl. Surf. Sci. 346(2015) 41-45.
|
[25] |
H. An, W.J. Lee, J. Jung, Graphene synthesis on Fe foil using thermal CVD, Curr. Appl. Phys. 11(2011) S81-S85.
|
[26] |
A.I. Aria, A.W. Gani, M. Gharib, Effect of dry oxidation on the energy gap and chemical composition of CVD graphene on nickel, Appl. Surf. Sci. 293(2014) 1-11.
|
[27] |
O.I. Aydin, T. Hallam, J.L. Thomassin, M. Mouis, G.S. Duesberg, Interface and strain effects on the fabrication of suspended CVD graphene devices, Solid State Electron. 108(2015) 75-83.
|
[28] |
S. Bhaviripudi, X. Jia, M.S. Dresselhaus, J. Kong, Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst, Nano Lett. 10(2010) 4128-4133.
|
[29] |
V. del Campo, R. Henriquez, P. Haberle, Effects of surface impurities on epitaxial graphene growth, Appl. Surf. Sci. 264(2013) 727-731.
|
[30] |
C.S. Chen, C.K. Hsieh, Effects of acetylene flow rate and processing temperature on graphene films grown by thermal chemical vapor deposition, Thin Solid Films 584(2015) 265-269.
|
[31] |
D.S. Choi, K.S. Kim, H. Kim, Y. Kim, T. Kim, S.-h. Rhy, et al., Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst, ACS Appl. Mater. Interfaces 6(2014) 19574-19578.
|
[32] |
M. Gautam, A.H. Jayatissa, Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles, Solid State Electron. 78(2012) 159-165.
|
[33] |
T.J. Gnanaprakasa, Y. Gu, S.K. Eddy, Z. Han, W.J. Beck, K. Muralidharan, et al., The role of copper pretreatment on the morphology of graphene grown by chemical vapor deposition, Microelectron. Eng. 131(2015) 1-7.
|
[34] |
J. Jiang, Z. Lin, X. Ye, M. Zhong, T. Huang, H. Zhu, Graphene synthesis by laserassisted chemical vapor deposition on Ni plate and the effect of process parameters on uniform graphene growth, Thin Solid Films 556(2014) 206-210.
|
[35] |
B.J. Lee, S.C. Cho, G.H. Jeong, Atmospheric pressure plasma treatment on graphene grown by chemical vapor deposition, Curr. Appl. Phys. 15(2015) 563-568.
|
[36] |
Z. Li, F. Zhou, D. Parobek, G.J. Shenoy, P. Muldoon, H. Liu, Copper substrate as a catalyst for the oxidation of chemical vapor deposition-grown graphene, J. Solid State Chem. 224(2015) 14-20.
|
[37] |
A. Mahmood, C.-S. Yang, J.-F. Dayen, S. Park, M.V. Kamalakar, D. Metten, et al., Room temperature dry processing of patterned CVD graphene devices, Carbon 86(2015) 256-263.
|
[38] |
F.T. Si, X.W. Zhang, X. Liu, Z.G. Yin, S.G. Zhang, H.L. Gao, et al., Effects of ambient conditions on the quality of graphene synthesized by chemical vapor deposition, Vacuum 86(2012) 1867-1870.
|
[39] |
J. Tian, B. Hu, Z. Wei, Y. Jin, Z. Luo, M. Xia, et al., Surface structure deduced differences of copper foil and film for graphene CVD growth, Appl. Surf. Sci. 300(2014) 73-79.
|
[40] |
M. Wang, S.K. Jang, Y.J. Song, S. Lee, CVD growth of graphene under exfoliated hexagonal boron nitride for vertical hybrid structures, Mater. Res. Bull. 61(2015) 226-230.
|
[41] |
Z.G. Wang, Y.F. Chen, P.J. Li, X. Hao, Y. Fu, K. Chen, et al., Effects of methane flux on structural and transport properties of CVD-grown graphene films, Vacuum 86(2012) 895-898.
|
[42] |
A. Pander, A. Hatta, H. Furuta, Optimization of catalyst formation conditions for synthesis of carbon nanotubes using Taguchi method, Appl. Surf. Sci. 371(2016) 425-435.
|
[43] |
G. Allaedini, P. Aminayi, S.M. Tasirin, Methane decomposition for carbon nanotube production:Optimization of the reaction parameters using response surface methodology, Chem. Eng. Res. Des. 112(2016) 163-174.
|
[44] |
N. Lisi, F. Buonocore, T. Dikonimos, E. Leoni, G. Faggio, G. Messina, et al., Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol, Thin Solid Films 571(Part 1) (2014) 139-144.
|
[45] |
H. Syed Muhammad, S.K. Chong, N.M. Huang, S. Abdul Rahman, Fabrication of highquality graphene by hot-filament thermal chemical vapor deposition, Carbon 86(2015) 1-11.
|
[46] |
S. Santangelo, M. Lanza, E. Piperopoulos, S. Galvagno, C. Milone, Optimization of CVD growth of CNT-based hybrids using the Taguchi method, Mater. Res. Bull. 47(2012) 595-601.
|
[47] |
I.h.A. Mohammed, M.T. Bankole, A.S. Abdulkareem, S.S. Ochigbo, A.S. Afolabi, O.K. Abubakre, Full factorial design approach to carbon nanotubes synthesis by CVD method in argon environment, S. Afr. J. Chem. Eng. 24(2017) 17-42.
|
[48] |
T. Zhang, X. Liu, F. Sun, Z. Zhang, The deposition parameters in the synthesis of CVD microcrystalline diamond powders optimized by the orthogonal experiment, J. Cryst. Growth 426(2015) 15-24.
|
[49] |
P.J. Wissmann, M.A. Grover, Optimization of a chemical vapor deposition process using sequential experimental design, Ind. Eng. Chem. Res. 49(2010) 5694-5701.
|
[50] |
M.A. Alrefae, A. Kumar, P. Pandita, A. Candadai, I. Bilionis, T.S. Fisher, Process optimization of graphene growth in a roll-to-roll plasma CVD system, AIP Adv. 7(2017) 115102.
|
[51] |
B. Simsek, Y.T. Ic, E.H. Simsek, A TOPSIS-based Taguchi optimization to determine optimal mixture proportions of the high strength self-compacting concrete, Chemom. Intell. Lab. Syst. 125(2013) 18-32.
|
[52] |
M. Khraisheh, A. Li, Bio-ethanol from municipal solid waste (MSW):The environmental impact assessment, Proceedings of the 2nd Annual Gas Processing Symposium, vol. 2, Elsevier, Amsterdam 2010, pp. 69-76.
|
[53] |
H. Huang, N. Qureshi, M.-H. Chen, W. Liu, V. Singh, Ethanol production from food waste at high solids content with vacuum recovery technology, J. Agric. Food Chem. 63(2015) 2760-2766.
|
[54] |
S. Yang, L. Chen, C. Wang, M. Rana, P.-C. Ma, Surface roughness induced superhydrophobicity of graphene foam for oil-water separation, J. Colloid Interface Sci. 508(2017) 254-262.
|
[55] |
J.S. Cameron, D.S. Ashley, J.S. Andrew, G.S. Joseph, T.G. Christopher, Accurate thickness measurement of graphene, Nanotechnology 27(2016) 125704.
|
[56] |
B. Simsek, O.F. Dilmac, Ortogonal dizinler kullanarak kimyasal buhar cokturme yontemi ile buyutulen grafenin ana etkiler analizi, Gazi Univ. Muhendislik-Mimarlik Fakul. Derg. 2018(2018).
|
[57] |
L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep. 473(2009) 51-87.
|
[58] |
G. Faggio, A. Capasso, G. Messina, S. Santangelo, T. Dikonimos, S. Gagliardi, et al., High-temperature growth of graphene films on copper foils by ethanol chemical vapor deposition, J. Phys. Chem. C 117(2013) 21569-21576.
|
[59] |
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., Raman spectrum of graphene and graphene layers, Phys. Rev. Lett. 97(2006) 187401.
|
[60] |
J. Guerrero-Contreras, F. Caballero-Briones, Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method, Mater. Chem. Phys. 153(2015) 209-220.
|
[61] |
M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys. 9(2007) 1276-1290.
|
[62] |
S. Muhammad Hafiz, R. Ritikos, T.J. Whitcher, N.Md. Razib, D.C.S. Bien, N. Chanlek, et al., A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide, Sensors Actuators B Chem. 193(2014) 692-700.
|
[63] |
H. Korucu, B. Simsek, A. Yartasi, A TOPSIS-based Taguchi design to investigate optimum mixture proportions of graphene oxide powder synthesized by hummers method, Arab. J. Sci. Eng. 43(2018) 6033-6055.
|
[64] |
B. Simsek, T. Uygunoglu, Multi-response optimization of polymer blended concrete:A TOPSIS based Taguchi application, Constr. Build. Mater. 117(2016) 251-262.
|
[65] |
Y. Tansel Ic, Development of a credit limit allocation model for banks using an integrated Fuzzy TOPSIS and linear programming, Expert Syst. Appl. 39(2012) 5309-5316.
|
[66] |
B. Simsek, G. Ultav, H. Korucu, A. Yartasi, Improvement of the graphene oxide dispersion properties with the use of TOPSIS based Taguchi application, Period. Polytech. Chem. Eng. 62(3) (2018) 323-335.
|
[67] |
A. Alnuaimi, I. Almansouri, I. Saadat, A. Nayfeh, Toward fast growth of large area high quality graphene using a cold-wall CVD reactor, RSC Adv. 7(2017) 51951-51957.
|