中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (7): 1461-1473.DOI: 10.1016/j.cjche.2018.08.027
• Selected Papers on Sustainable Chemical Process Systems • 上一篇 下一篇
Wentao Tang, Prodromos Daoutidis
收稿日期:
2018-06-12
出版日期:
2019-07-28
发布日期:
2019-10-14
通讯作者:
Prodromos Daoutidis
Wentao Tang, Prodromos Daoutidis
Received:
2018-06-12
Online:
2019-07-28
Published:
2019-10-14
Contact:
Prodromos Daoutidis
摘要: Large-scale and complex process systems are essentially interconnected networks. The automated operation of such process networks requires the solution of control and optimization problems in a distributed manner. In this approach, the network is decomposed into several subsystems, each of which is under the supervision of a corresponding computing agent (controller, optimizer). The agents coordinate their control and optimization decisions based on information communication among them. In recent years, algorithms and methods for distributed control and optimization are undergoing rapid development. In this paper, we provide a comprehensive, up-to-date review with perspectives and discussions on possible future directions.
Wentao Tang, Prodromos Daoutidis. Distributed control and optimization of process system networks: A review and perspective[J]. 中国化学工程学报, 2019, 27(7): 1461-1473.
Wentao Tang, Prodromos Daoutidis. Distributed control and optimization of process system networks: A review and perspective[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1461-1473.
[1] P. Daoutidis, M. Zachar, S.S. Jogwar, Sustainability and process control:A survey and perspective, J. Process Control 44(2016) 184-206. [2] J.J. Siirola, T.F. Edgar, Process energy systems:Control, economic, and sustainability objectives, Comput. Chem. Eng. 47(2012) 134-144. [3] S.S. Jogwar, A.I. Torres, P. Daoutidis, Networks with large solvent recycle:Dynamics, hierarchical control, and a biorefinery application, AIChE J. 58(2012) 1764-1777. [4] M. Baldea, N.H. El-Farra, B.E. Ydstie, Dynamics and control of chemical process networks:Integrating physics, communication and computation, Comput. Chem. Eng. 51(2013) 42-54. [5] N.K. Shah, M.G. Ierapetritou, Short-term scheduling of a large-scale oil-refinery operations:Incorporating logistics details, AIChE J. 57(2011) 1570-1584. [6] M. Zachar, P. Daoutidis,Microgrid/macrogrid energy exchange:A novelmarket structure and stochastic scheduling, IEEE Trans. Smart Grid 8(2017) 178-189. [7] M.J. Risbeck, C.T. Maravelias, J.B. Rawlings, R.D. Turney, A mixed-integer linear programming model for real-time cost optimization of building heating, ventilation, and air conditioning equipment, Energy Build. 142(2017) 220-235. [8] D.J. Garcia, F. You, Supply chain design and optimization:Challenges and opportunities, Comput. Chem. Eng. 81(2015) 153-170. [9] A.P. Barbosa-Póvoa, Progresses and challenges in process industry supply chains optimization, Curr. Opin. Chem. Eng. 1(2012) 446-452. [10] M. Baldea, P. Daoutidis, Dynamics and Nonlinear Control of Integrated Process Systems, Cambridge University Press, 2012. [11] D. Yue, F. You, Optimal supply chain design and operations under multi-scale uncertainties:Nested stochastic robust optimization modeling framework and solution algorithm, AIChE J. 62(2016) 3041-3055. [12] L. Luo, F. Cheng, T. Qiu, J. Zhao, Refined convergent cross-mapping for disturbance propagation analysis of chemical processes, Comput. Chem. Eng. 106(2017) 1-16. [13] S. Riverso, M. Farina, G. Ferrari-Trecate, Plug-and-play state estimation and application to distributed output-feedback model predictive control, Eur. J. Control 25(2015) 17-26. [14] D. Chilin, J. Liu, D. Muñoz de la Peña, P.D. Christofides, J.F. Davis, Detection, isolation and handling of actuator faults in distributed model predictive control systems, J. Process Control 20(2010) 1059-1075. [15] S. Riverso, F. Boem, G. Ferrari-Trecate, T. Parisini, Plug-and-play fault detection and control-reconfiguration for a class of nonlinear large-scale constrained systems, IEEE Trans. Autom. Control 61(2016) 3963-3978. [16] D.E. Seborg, D.A. Mellichamp, T.F. Edgar, F.J. Doyle Ⅲ, Process Dynamics and Control, John Wiley & Sons, 2010. [17] C.T. Maravelias, C. Sung, Integration of production planning and scheduling:Overview, challenges and opportunities, Comput. Chem. Eng. 33(2009) 1919-1930. [18] Y. Chu, F. You, Model-based integration of control and operations:Overview, challenges, advances, and opportunities, Comput. Chem. Eng. 83(2015) 2-20. [19] L.S. Dias, M.G. Ierapetritou, From process control to supply chain management:An overview of integrated decision making strategies, Comput. Chem. Eng. 106(2017) 826-835. [20] P. Daoutidis, J.H. Lee, I. Harjunkoski, S. Skogestad, M. Baldea, C. Georgakis, Integrating operations and control:A perspective and roadmap for future research, Comput. Chem. Eng. 115(2018) 179-184. [21] I.E. Grossmann, Enterprise-wide optimization:A new frontier in process systems engineering, AIChE J. 51(2005) 1846-1857. [22] I.E. Grossmann, Advances in mathematical programming models for enterprise-wide optimization, Comput. Chem. Eng. 47(2012) 2-18. [23] C.T. Maravelias, General framework and modeling approach classification for chemical production scheduling, AIChE J. 58(2012) 1812-1828. [24] I. Harjunkoski, C.T. Maravelias, P. Bongers, P.M. Castro, S. Engell, I.E. Grossmann, J. Hooker, C. Me·ndez, G. Sand, J. Wassick, Scope for industrial applications of production scheduling models and solution methods, Comput. Chem. Eng. 62(2014) 161-193. [25] P.M. Castro, I.E. Grossmann, Q. Zhang, Expanding scope and computational challenges in process scheduling, Comput. Chem. Eng. 114(2018) 14-42. [26] J.B. Rawlings, D.Q. Mayne, Model Predictive Control:Theory and Design, Nob Hill Publishing, 2009. [27] D.Q. Mayne, Model predictive control:Recent developments and future promise, Automatica 50(2014) 2967-2986. [28] J.B. Rawlings, D. Angeli, C.N. Bates, Fundamentals of economic model predictive control, in:Proc. 51st Conf. Decis. Control (CDC), IEEE, 2012, pp. 3851-3861. [29] M. Ellis, J. Liu, P.D. Christofides, Economic Model Predictive Control, Springer, 2016. [30] D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation:Numerical Methods, Prentice Hall, 1989. [31] C. Langbort, R.S. Chandra, R. D'Andrea, Distributed control design for systems interconnected over an arbitrary graph, IEEE Trans. Autom. Control 49(2004) 1502-1519. [32] F. Lin, M. Fardad, M.R. Jovanović, Design of optimal sparse feedback gains via the alternating direction method of multipliers, IEEE Trans. Autom. Control 58(2013) 2426-2431. [33] D. Hioe, J. Bao, B.E. Ydstie, Dissipativity analysis for networks of process systems, Comput. Chem. Eng. 50(2013) 207-219. [34] M.J. Tippett, J. Bao, Dissipativity based distributed control synthesis, J. Process Control 23(2013) 755-766. [35] R. Scattolini, Architectures for distributed and hierarchical model predictive control-A review, J. Process Control 19(2009) 723-731. [36] P.D. Christofides, R. Scattolini, D. Muñoz de la Peña, J. Liu, Distributed model predictive control:A tutorial review and future research directions, Comput. Chem. Eng. 51(2013) 21-41. [37] R.R. Negenborn, J.M. Maestre, Distributed model predictive control:An overview and roadmap of future research opportunities, IEEE Control. Syst. 34(2014) 87-97. [38] N. Gatsis, G.B. Giannakis, Residential load control:Distributed scheduling and convergence with lost AMI messages, IEEE Trans. Smart Grid 3(2012) 770-786. [39] S.-C. Tsai, Y.-H. Tseng, T.-H. Chang, Communication-efficient distributed demand response:A randomized ADMM approach, IEEE Trans. Smart Grid 8(2017) 1085-1095. [40] A.T. Georgiou, K.R. Sheth, Plant-wide dynamic economic optimization:Key challenges and new opportunities, in:Foundations of Computer Aided Process Operations/Chemical Process Control (FOCAPO/CPC 2017), 2017. http://focapocpc.org/pdf/Georgiou.pdf. [41] S. Harwood, S. Kameswaran, T.A. Badgwell, Analysis of the alternating direction method of multipliers for the optimization of distributed nonconvex systems, in:2017 AIChE Annual Meeting, 2017. https://www.aiche.org/conferences/aiche-annualmeeting/2017/proceeding/paper/522fanalysis-alternatingdirection-method-multipliers-optimization-distributednonconvex-systems. [42] R.A. Gupta, M.-Y. Chow, Networked control system:Overview and research trends, IEEE Trans. Ind. Electron. 57(2010) 2527-2535. [43] X. Ge, F. Yang, Q.-L. Han, Distributed networked control systems:A brief overview, Inf. Sci. 380(2017) 117-131. [44] L. Zhang, H. Gao, O. Kaynak, Network-induced constraints in networked control systems-A survey, IEEE Trans. Ind. Inform. 9(2013) 403-416. [45] R. Zhang, J. Kwok, Asynchronous distributed ADMM for consensus optimization, Proc. 31st Int. Conf. Mach. Learn. (ICML) (2014) 1701-1709. [46] T.-H. Chang, M. Hong, W.-C. Liao, X. Wang, Asynchronous distributed ADMM for large-scale optimization-Part I:Algorithm and convergence analysis, IEEE Trans. Signal Process. 64(2016) 3118-3130. [47] M. Schmidt, N.L. Roux, F.R. Bach, Convergence rates of inexact proximalgradient methods for convex optimization, Proc. 24th Int. Conf. Neural Inf. Process. Syst. (NIPS'11) (2011) 1458-1466. [48] Y. Pu, M.N. Zeilinger, C.N. Jones, Inexact fast alternating minimization algorithm for distributed model predictive control, in:Proc. 53rd Conf. Decis. Control (CDC), IEEE, 2014, pp. 5915-5921. [49] Y. Pu, M.N. Zeilinger, C.N. Jones, Quantization design for distributed optimization, IEEE Trans. Autom. Control 62(2017) 2107-2120. [50] M. Zhong, C.G. Cassandras, Asynchronous distributed optimization with event-driven communication, IEEE Trans. Autom. Control 55(2010) 2735-2750. [51] M. Meinel, M. Ulbrich, S. Albrecht, A class of distributed optimization methods with event-triggered communication, Comput. Optim. Appl. 57(2014) 517-553. [52] P. Wan, M.D. Lemmon, Optimal power flow in microgrids using eventtriggered optimization, Proc. 2010 Amer. Control Conf. (ACC), IEEE (2010) 2521-2526. [53] C. Li, X. Yu, W. Yu, T. Huang, Z.-W. Liu, Distributed event-triggered scheme for economic dispatch in smart grids, IEEE Trans. Ind. Inform. 12(2016) 1775-1785. [54] T. Yang, Trading computation for communication:Distributed stochastic dual coordinate ascent, Proc. 26th Int. Conf. Neural Inf. Process. Syst. (NIPS'13) (2013) 629-637. [55] M. Jaggi, V. Smith, M. Takác, J. Terhorst, S. Krishnan, T. Hofmann, M.I. Jordan, Communication-efficient distributed dual coordinate ascent, Proc. 27th Int. Conf. Neural Inf. Process. Syst. (NIPS'14) (2014) 3068-3076. [56] O. Shamir, N. Srebro, T. Zhang, Communication-efficient distributed optimization using an approximate Newton-type method, Proc. 31st Int. Conf. Mach. Learn. (ICML) (2014) 1000-1008. [57] S.J. Reddi, J. Konec ńý, P. Richtárik, B. Póczós, A. Smola, AIDE:Fast and communication efficient distributed optimization arXiv preprint arXiv:1608.06879, 2016. [58] M.B.G. Cloosterman, N. van de Wouw, W. Heemels, H. Nijmeijer, Stability of networked control systems with uncertain time-varying delays, IEEE Trans. Autom. Control 54(2009) 1575-1580. [59] H. Lin, P.J. Antsaklis, Stability and stabilizability of switched linear systems:A survey of recent results, IEEE Trans. Autom. Control 54(2009) 308-322. [60] J. Liu, D. Muñoz de la Peña, P.D. Christofides, Distributed model predictive control of nonlinear systems subject to asynchronous and delayed measurements, Automatica 46(2010) 52-61. [61] J. Liu, X. Chen, D. Muñoz de la Peña, P.D. Christofides, Iterative distributed model predictive control of nonlinear systems:Handling asynchronous, delayed measurements, IEEE Trans. Autom. Control 57(2012) 528-534. [62] H. Li, Y. Shi, Distributed receding horizon control of large-scale nonlinear systems:Handling communication delays and disturbances, Automatica 50(2014) 1264-1271. [63] D.Yue,Q.-L.Han,C.Peng,Statefeedbackcontrollerdesignofnetworkedcontrol systems, in:Proc. 2004 Int. Conf. Control Appl, IEEE, 2004, pp. 242-247. [64] D.E. Quevedo, D. Nešić, Input-to-state stability of packetized predictive control over unreliable networks affected by packet dropouts, IEEE Trans. Autom. Control 56(2011) 370-375. [65] Y.-B. Zhao, J. Kim, G.-P. Liu, D. Rees, Compensation and stochastic modeling of discrete-time networked control systems with data packet disorder, Int. J. Control Autom. Syst. 10(2012) 1055-1063. [66] M. Heidarinejad, J. Liu, D. Muñoz de la Peña, J.F. Davis, P.D. Christofides, Handling communication disruptions in distributed model predictive control, J. Process Control 21(2011) 173-181. [67] H. Li, M.-Y. Chow, Z. Sun, Optimal stabilizing gain selection for networked control systems with time delays and packet losses, IEEE Trans. Control Syst. Technol. 17(2009) 1154-1162. [68] L.A. Montestruque, P. Antsaklis, Stability of model-based networked control systems with time-varying transmission times, IEEE Trans. Autom. Control 49(2004) 1562-1572. [69] I.G. Polushin, P.X. Liu, C.-H. Lung, On the model-based approach to nonlinear networked control systems, Automatica 44(2008) 2409-2414. [70] M. Tabbara, D. Nešić, A.R. Teel, Stability of wireless and wireline networked control systems, IEEE Trans. Autom. Control 52(2007) 1615-1630. [71] W.M.H. Heemels, A.R. Teel, N. Van de Wouw, D. Nešić, Networked control systems with communication constraints:Tradeoffs between transmission intervals, delays and performance, IEEE Trans. Autom. Control 55(2010) 1781-1796. [72] E. Fridman, M. Dambrine, Control under quantization, saturation and delay:An LMI approach, Automatica 45(2009) 2258-2264. [73] Y. Ishido, K. Takaba, D.E. Quevedo, Stability analysis of networked control systems subject to packet-dropouts and finite level quantization, Syst. Control Lett. 60(2011) 325-332. [74] R. Postoyan, N. Van de Wouw, D. Nešić, W.M.H. Heemels, Tracking control for nonlinear networked control systems, IEEE Trans. Autom. Control 59(2014) 1539-1554. [75] F. Forni, S. Galeani, D. Nešić, L. Zaccarian, Event-triggered transmission for linear control over communication channels, Automatica 50(2014) 490-498. [76] R. Postoyan, P. Tabuada, D. Nešić, A. Anta, A framework for the eventtriggered stabilization of nonlinear systems, IEEE Trans. Autom. Control 60(2015) 982-996. [77] A. Girard, Dynamic triggering mechanisms for event-triggered control, IEEE Trans. Autom. Control 60(2015) 1992-1997. [78] H. Li, Y. Shi, Event-triggered robust model predictive control of continuoustime nonlinear systems, Automatica 50(2014) 1507-1513. [79] F.D.Brunner,M.Heemels,F.Allgöwer,Robustself-triggeredMPCforconstrained linear systems:A tube-based approach, Automatica 72(2016) 73-83. [80] P. Daoutidis, W. Tang, S.S. Jogwar, Decomposing complex plants for distributed control:Perspectives from network theory, Comput. Chem. Eng. 114(2018) 43-51. [81] I.S. Duff, A survey of sparse matrix research, Proc. IEEE 65(1977) 500-535. [82] D.B. West, Introduction to Graph Theory, Prentice Hall, 2001. [83] A. Zečević, D.D. Šiljak, Control of Complex Systems:Structural Constraints and Uncertainty, Springer, 2010. [84] A. Michel, R. Miller, W. Tang, Lyapunov stability of interconnected systems:Decomposition into strongly connected subsystems, IEEE Trans. Circ. Syst. 25(1978) 799-809. [85] V. Pichai, M.E. Sezer, D.D. Šiljak, A graph-theoretic algorithm for hierarchical decomposition of dynamic systems with applications to estimation and control, IEEE Trans. Syst. Man Cybern. 13(1983) 197-207. [86] D.D. Šiljak, Large-scale Dynamic Systems:Stability and Structure, North Holland, 1978. [87] C.-E. Bichot, P. Siarry, Graph Partitioning, Wiley, 2011. [88] K. Hangos, Zs. Tuza, Optimal control structure selection for process systems, Comput. Chem. Eng. 25(2001) 1521-1536. [89] J. Anderson, A. Papachristodoulou, A decomposition technique for nonlinear dynamical system analysis, IEEE Trans. Autom. Control 57(2012) 1516-1521. [90] C. Ocampo-Martínez, S. Bovo, V. Puig, Partitioning approach oriented to the decentralised predictive control of large-scale systems, J. Process Control 21(2011) 775-786. [91] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, C. Schulz, Recent advances in graph partitioning, in:L. Kliemann, P. Sanders (Eds.), Algorithm Engineering:Selected Results and Surveys, Springer, 2016, pp. 117-158. [92] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering:A review, ACM Comput. Surv. (CSUR) 31(1999) 264-323. [93] R. Xu, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Netw. 16(2005) 645-678. [94] F. Murtagh, P. Contreras, Algorithms for hierarchical clustering:An overview, Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2(2012) 86-97. [95] P. Daoutidis, C. Kravaris, Structural evaluation of control configurations for multivariable nonlinear processes, Chem. Eng. Sci. 47(1992) 1091-1107. [96] S. Heo, W.A. Marvin, P. Daoutidis, Automated synthesis of control configurations for process networks based on structural coupling, Chem. Eng. Sci. 136(2015) 76-87. [97] L. Kang, W. Tang, Y. Liu, P. Daoutidis, Control configuration synthesis using agglomerative hierarchical clustering:A graph-theoretic approach, J. Process Control 46(2016) 43-54. [98] M. Moharir, L. Kang, P. Daoutidis, A. Almansoori, Graph representation and decomposition of ODE/hyperbolic PDE systems, Comput. Chem. Eng. 106(2017) 532-543. [99] S. Heo, P. Daoutidis, Control-relevant decomposition of process networks via optimization-based hierarchical clustering, AIChE J. 62(2016) 3177-3188. [100] A.-L. Barabási, Network Science, Cambridge University Press, 2016. [101] M. Girvan, M.E.J. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci. 99(2002) 7821-7826. [102] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech. Theory Exp. 2008(2008) P10008. [103] M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E 69(2004) 026113. [104] M.E.J. Newman, Modularity and community structure in networks, Proc. Natl. Acad. Sci. 103(2006) 8577-8582. [105] S. Fortunato, D. Hric, Community detection in networks:A user guide, Phys. Rep. 659(2016) 1-44. [106] U.N. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect community structures in large-scale networks, Phys. Rev. E 76(2007) 036106. [107] J. Xie, B.K. Szymanski, X. Liu, SLPA:Uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process, Proc. 11th Int. Conf. Data Min. Data Min. Workshops (ICDMW), IEEE (2011) 344-349. [108] M. Rosvall, C.T. Bergstrom, Maps of random walks on complex networks reveal community structure, Proc. Natl. Acad. Sci. U. S. A. 105(2008) 1118-1123. [109] B. Karrer, M.E.J. Newman, Stochastic blockmodels and community structure in networks, Phys. Rev. E 83(2011) 016107. [110] T.P. Peixoto, Nonparametric Bayesian inference of the microcanonical stochastic block model, Phys. Rev. E 95(2017) 012317. [111] S.S. Jogwar, P. Daoutidis, Community-based synthesis of distributed control architectures for integrated process networks, Chem. Eng. Sci. 172(2017) 434-443. [112] W. Tang, P. Daoutidis, Network decomposition for distributed control through community detection in input-output bipartite graphs, J. Process Control 64(2018) 7-14. [113] W. Tang, D.B. Pourkargar, P. Daoutidis, Relative time-averaged gain array (RTAGA) for distributed control-oriented network decomposition, AIChE J. 64(2018) 1682-1690. [114] M. Ellis, P.D. Christofides, Selection of control configurations for economic model predictive control systems, AIChE J. 60(2014) 3230-3242. [115] R. Chen, K. Dave, T.J. McAvoy, M. Luyben, A nonlinear dynamic model of a vinyl acetate process, Ind. Eng. Chem. Res. 42(2003) 4478-4487. [116] E.A. del Rio-Chanona, F. Fiorelli, V.S. Vassiliadis, Automated structure detection for distributed process optimization, Comput. Chem. Eng. 89(2016) 135-148. [117] W. Tang, A. Allman, D.B. Pourkargar, P. Daoutidis, Optimal decomposition for distributed optimization in nonlinear model predictive control through community detection, Comput. Chem. Eng. 111(2018) 43-54. [118] A. Allman, W. Tang, P. Daoutidis, Towards a generic algorithm for identifying high-quality decompositions of optimization problems, Comput. Aided Chem. Eng. 44(2018) 943-948. [119] S.J. Wright, Coordinate descent algorithms, Math. Program. 151(2015) 3-34. [120] J. Liu, D. Muñoz de la Peña, P.D. Christofides, Distributed model predictive control of nonlinear process systems, AIChE J. 55(2009) 1171-1184. [121] B.T. Stewart, A.N. Venkat, J.B. Rawlings, S.J. Wright, G. Pannocchia, Cooperative distributed model predictive control, Syst. Control Lett. 59(2010) 460-469. [122] M. Heidarinejad, J. Liu, P.D. Christofides, Distributed model predictive control of switched nonlinear systems with scheduled mode transitions, AIChE J. 59(2013) 860-871. [123] M. Heidarinejad, J. Liu, P.D. Christofides, Economic model predictive control of nonlinear process systems using Lyapunov techniques, AIChE J. 58(2012) 855-870. [124] F. Albalawi, H. Durand, P.D. Christofides, Distributed economic model predictive control for operational safety of nonlinear processes, AIChE J. 63(2017) 3404-3418. [125] Yu. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM J. Optim. 22(2012) 341-362. [126] P. Richtárik, M. Takáć, Parallel coordinate descent methods for big data optimization, Math. Program. 156(2016) 433-484. [127] A. Beck, L. Tetruashvili, On the convergence of block coordinate descent type methods, SIAM J. Optim. 23(2013) 2037-2060. [128] Z. Lu, L. Xiao, On the complexity analysis of randomized block-coordinate descent methods, Math. Program. 152(2015) 615-642. [129] M. Hong, X. Wang, M. Razaviyayn, Z.-Q. Luo, Iteration complexity analysis of block coordinate descent methods, Math. Program. 163(2017) 85-114. [130] Yu. Nesterov, A method of solving a convex programming problem with convergence rate O(1/k2), Sov. Math. Dokl. 27(1983) 372-376. [131] O. Fercoq, P. Richtárik, Accelerated, parallel, and proximal coordinate descent, SIAM J. Optim. 25(2015) 1997-2023. [132] Z. Allen-Zhu, Z. Qu, P. Richtárik, Y. Yuan, Even faster accelerated coordinate descent using non-uniform sampling, Proc. 33rd Int. Conf. Mach. Learn. (ICML) (2016) 1110-1119. [133] Y. Xu, W. Yin, A globally convergent algorithm for nonconvex optimization based on block coordinate update, J. Sci. Comput. 72(2017) 700-734. [134] J. Liu, X. Chen, D. Muñoz de la Peña, P.D. Christofides, Sequential and iterative architectures for distributed model predictive control of nonlinear process systems, AIChE J. 56(2010) 2137-2149. [135] M. Guignard, S. Kim, Lagrangean decomposition:A model yielding stronger Lagrangean bounds, Math. Program. 39(1987) 215-228. [136] M.L. Fisher, An applications-oriented guide to Lagrangian relaxation, Interfaces 15(1985) 10-21. [137] H. Schramm, J. Zowe, A version of the bundle idea for minimizing a nonsmooth function:Conceptual idea, convergence analysis, numerical results, SIAM J. Optim. 2(1992) 121-152. [138] X. Zhao, P.B. Luh, J. Wang, Surrogate gradient algorithm for Lagrangian relaxation, J. Optim. Theory Appl. 100(1999) 699-712. [139] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, 1982. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||