[1] X. Qian, Y.Z. Zhu, W.Y. Chang, J. Song, B. Pan, L. Lu, Benzo[a]carbazole-based donor-π-acceptor type organic dyes for highly efficient dye-sensitized solar cells, ACS Appl. Mater. Inter. 7(2015) 9015-9022. [2] K.N. Sun, Y. Ma, W.Y. Zhang, Y.P. Wen, L. Wang, J.L. Zhang, New carbazole-based dyes with asymmetric butterfly structure for dye-sensitized solar cells:Design and properties studies, Dyes Pigments 139(2017) 148-156. [3] J.L. Li, C.G. Andrew, Carbazole-based polymers for organic photovoltaic devices, Chem. Soc. Rev. 39(2010) 2399-2410. [4] G. Yogesh, A. Nagappanpillai, K.K. Sandeep, J. Joshy, P. Manojit, R. Danaboyina, Carbazole-linked near-infrared aza-bodipy dyes as triplet sensitizers and photoacoustic contrast agents for deep-tissue imaging, Chem. Eur. J. 23(2017) 6570-6578. [5] F.F. Zhang, L.L. Gan, C.H. Zhou, Synthesis, antibacterial and antifungal activities of some carbazole derivatives, Bioorg. Med. Chem. Lett. 20(2010) 1881-1884. [6] S. Chris, J.S. Timothy, Heterocyclic scaffolds as promising anticancer agents against tumours of the central nervous system:Exploring the scope of indole and carbazole derivatives, Eur. J. Med. Chem. 97(2015) 552-560. [7] S.S. Mahamadhanif, K. Rajshekhar, N. Thapliyal, A.R. Rajesh, B.P. Mahesh, A.M. Faya, Current perspective of natural alkaloid carbazole and its derivatives as antitumor agents, Anti-Cancer Agent. Me. 15(2015) 1049-1065. [8] B.S. Lateef, O.I. Mathew, O.A. Olukayode, Properties, environmental fate and biodegradation of carbazole, 3Biotech 7(2017) 1-14. [9] R.H. Xiao, Coal Tar Chemistry, Metallurgical industry press, Beijing, 2009. [10] G. Iraj, E. Feridun, Solubility of an anthracene, phenanthrene, and carbazole mixture in supercritical carbon dioxide, J. Chem. Eng. Data 47(2002) 333-338. [11] S.J. Kim, H.C. Kang, Y.S. Kim, H.J. Jeong, Liquid membrane permeation of nitrogen heterocyclic compounds contained in model coal tar fraction, Bull. Kor. Chem. Soc. 31(2010) 1143-1148. [12] C.P. Ye, X.X. Ding, W.Y. Li, T.T. Wu, M.M. Fan, J. Feng, Highly efficient solvent screening for separating carbazole from crude anthracene, Energy Fuel 30(2016) 3529-3534. [13] F. Martínez, A. Martín, I. Asencio, J. Rincón, Solubility of anthracene in sub- and supercritical propane, J. Chem. Eng. Data 55(2010) 1232-1236. [14] F. Martínez, A. Martín, R. Camarillo, J. Rincón, Measurement and modeling of the solubility of 9h-carbazole in sub- and supercritical propane, J. Chem. Eng. Data 56(2011) 956-962. [15] D. Fischer, Study on the efficiency of zone melting of aromatic hydrocarbons, Mater. Res. Bull. 8(1973) 385-392. [16] M. Tachibana, F. Motohisa, Selective separations of small amounts of naphthacene and 5H-benzo[b]carbazole from analogous polycyclic aromatic compounds using bibenzyl as a zone-melting medium, Anal. Chim. Acta 251(1991) 241-246. [17] A.L. Ahmad, A. Kusumastuti, C.J.C. Derek, B.S. Ooi, Emulsion liquid membrane for heavy metal removal:An overview on emulsion stabilization and destabilization, Chem. Eng. J. 171(2011) 870-882. [18] A.A. Umar, I.B.M. Saaid, A.A. Sulaimon, R.B.M. Pilus, A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids, J, Petrol. Sci. Eng. 165(2018) 673-690. [19] C.P. Ye, H. Zheng, T.T. Wu, M.M. Fan, J. Feng, W.Y. Li, Optimization of solvent crystallization process in obtaining high purity anthracene and carbazole from crude anthracene, AIChE J. 60(2014) 275-281. [20] J. Gui, Study on the preconcentration and separation of carbazole, anthracene and phenanthrene fromanthracene slag, Ms. Thesis, China University of Mining & Technology, Xuzhou, 2016. [21] S. Mahdieh, M. Babak, R.M. Hamid, T.H. Kurosh, Oxidative desulfurization of model diesel using ionic liquid 1-octyl-3-methylimidazolium hydrogen sulfate:An investigation of the ultrasonic irradiation effect on performance, Energy Fuel 30(2016) 10909-10916. [22] L. Zhang, C.S. Zhou, B. Wang, E.Y. Abu, H.L. Ma, X. Zhang, Study of ultrasonic cavitation during extraction of the peanut oil at varying frequencies, Ultrason. Sonochem. 37(2017) 106-113. [23] S. Özgür, Y. Özcan, Ö.Ç. Mehmet, G. Belgin, G. Sultan, Influence of the addition of various ionic liquids on coal extraction with NMP, Fuel 212(2018) 12-18. [24] F. Chemat, H. Zill, M.K. Khan, Applications of ultrasound in food technology:Processing, preservation and extraction, Ultrason. Sonochem 18(2011) 13-835. [25] A. Meullemiestre, E. Petitcolas, Z. Maache-Rezzoug, F. Chemat, S.A. Rezzoug, Impact of ultrasound on solid-liquid extraction of phenolic compounds from maritime pine sawdust waste kinetics, optimization and large scale experiments, Ultrason. Sonochem. 28(2016) 230-239. [26] D. Mahboubeh, A. Ali, Z. Hamid, Solvent extraction of cadmium and zinc from sulphate solutions:Comparison of mechanical agitation and ultrasonic irradiation, Ultrason. Sonochem. 34(2017) 931-937. [27] A. Tahani, B. Jamshid, K. Hossein, R. Sohrab, Synthesis of zeolite Na-P from coal fly ash by thermo-sonochemical treatment, Fuel 182(2016) 494-501. [28] S.R. Shirsath, S.H. Sonawane, P.R. Gogate, Intensification of extraction of natural products using ultrasonic irradiations-A review of current status, Chem. Eng. Process. 53(2012) 10-23. [29] G.S. Anne, A.V. Maryline, F. Frédéric, C. Patrick, T. Sylvain, C. Farid, Ultrasound induced green solvent extraction of oil from oleaginous seeds, Ultrason. Sonochem. 31(2016) 319-329. [30] A. Perrier, C. Delsart, N. Boussetta, N. Grimi, M. Citeau, E. Vorobiev, Effect of ultrasound and green solvents addition on the oil extraction efficiency from rapeseed flakes, Ultrason. Sonochem. 39(2017) 58-65. [31] A. Harry, L.C. Scott, G. Claudio, A.H. Christopher, R.L. Kevin, P. Julie, Experimental measurement of noncovalent interactions between halogens and aromatic rings, Chem. Bio. Chem. 5(2004) 657-665. [32] J.R. Darío, M.V. Margarita, M.P. Nélida, Topological analysis of aromatic halogenhydrogen bonds by electron charge density and electrostatic potentials, J. Mol. Model. 16(2010) 737-748. [33] V. Stefov, L. Pejov, B. Šoptrajanov, The influence of N—H…π hydrogen bonding on the anharmonicity of the v (N-H) mode and orientational dynamics of nearly continuously solvated indole, J. Mol. Struct. 555(2000) 363-373. [34] P. Lavanya, S. Ramaiah, A. Anbarasu, Computational analysis of N—H…π interactions and its impact on the structural stability of β-lactamases, Comput. Biol. Med. 46(2014) 22-28. [35] G.B. Huang, W.E. Liu, A. Valkonen, H. Yao, K. Rissanen, W. Jiang, Selective recognition of aromatic hydrocarbons by endo-functionalized molecular tubes via C/N—H…π interactions, Chinese Chem. Lett. 29(2018) 91-94. [36] W.S. Guo, F. Guo, H.N. Xu, L. Yuan, Z.H. Wang, J. Tong, Host channel framework determined by C—H…π interaction in the inclusion crystal of 2,5-bis(diphenylmethyl) hydroquinone and benzaldehyde, J. Mol. Struct. 733(2005) 143-149. [37] Y.T. Hsing, M.H. Luo, M.J. Chang, C.F. Tzu, Y.C. Kew, Rac-11-t-Butoxy-1, 4-dihydro-1, 4-methanoanthracene a two-dimensional framework structure built from C—H…O and C—H…π hydrogen bonds, Chinese Chem. Lett. 23(2012) 1043-1046. [38] L. Chen, H.P. Xiao, X.H. Li, Self-assembly of interpenetrated supramolecular networks by C—H…π interaction, J. Mol. Struct. 1037(2013) 283-287. [39] Q. Zhu, H. Wang, X.R. Zhao, W.J. Jin, The phosphorescent behaviors of 9-bromo- and 9-iodophenanthrene in crystals modulated by π-π interactions, C—H…π hydrogen bond and C—I…π halogen bond, J. Photoch. Photobio. 274(2014) 98-107. [40] A. Ramón, S. Pankaj, F.J. Flores, G. René, E.P. Georgina, L.O. Francisco, Stable ferrocenyl-NHC Pd (II) complexes:Evidence of C—H…H/π interaction and M—O bonding in solution, J. Organomet. Chem. 848(2017) 196-206. [41] T. Snehasish, R. Sourav, B. Antonio, F.C. Shouvik Antonio, Estimation of non-covalent CH…π, π…π (chelate ring) and hydrogen bonding interactions in vanadium (V) Schiff base complexes:Methylene spacer regulated variation in self-assembly, Inorg. Chim. Acta 467(2017) 212-220. |