[1] Q. Muslim, A. Ali, Drag force reduction of flowing crude oil by polymers addition, Iraqi J. Mech. Mater. Eng. 8(2008) 149-161. [2] H.A. Abdulbari, R.M. Yunus, N.H. Abdurahman, A. Charles, Going against the flow-A review of non-additive means of drag reduction, J. Ind. Eng. Chem. 19(2013) 27-36. [3] V. Truong, Drag Reduction Technologies, 2001. [4] P. Diamond, J. Harvey, J. Katz, D. Nelson, P. Steinhardt, Drag Reduction by Polymer Additives, vol. 3481, 1992, pp. 1-53. [5] R.C.R. Figueredo, E. Sabadini, Firefighting foam stability:The effect of the drag reducer poly(ethylene) oxide, Colloids Surf. A Physicochem. Eng. Asp. 215(2003) 77-86. [6] M.M.A. El-azm, S.Z. Kassab, S.A. Elshafie, Experimental and Numerical Study for Turbulent Flow Drag Reduction in District Cooling Systems, vol. 6, 2014, pp. 113-125. [7] A. Al-Sarkhi, Drag reduction with polymers in gas-liquid/liquid-liquid flows in pipes:A literature review, J. Nat. Gas Sci. Eng. 2(2010) 41-48. [8] M. Al-Yaari, A. Soleimani, B. Abu-Sharkh, U. Al-Mubaiyedh, A. Al-Sarkhi, Effect of drag reducing polymers on oil-water flow in a horizontal pipe, Int. J. Multiphase Flow 35(2009) 516-524. [9] A. Abubakar, T. Al-Wahaibi, Y. Al-Wahaibi, A.R. Al-Hashmi, A. Al-Ajmi, Roles of drag reducing polymers in single-and multi-phase flows, Chem. Eng. Res. Des. 92(2014) 2153-2181. [10] R. García-Mayoral, J. Jiménez, Drag reduction by riblets, Philos. Transact. A Math. Phys. Eng. Sci. 369(2011) 1412-1427. [11] S. Martin, B. Bhushan, Modeling and optimization of shark-inspired riblet geometries for low drag applications, J. Colloid Interface Sci. 474(2016) 206-215. [12] M. Perlin, D.R. Dowling, S.L. Ceccio, Freeman scholar review:Passive and active skin friction drag reduction in turbulent boundary layers, J. Fluids Eng. 138(2016) 091104. [13] W. Raschi, J. Musick, Hydrodynamic Aspects of Shark Scales, 1986. [14] S.P. Wilkinson, J.B. Anders, B.S. Lazos, D.M. Bushnell, Turbulent drag reduction research at NASA Langley:Progress and plans, Int. J. Heat Fluid Flow 9(1988) 266-277. [15] A. Baron, M. Quadrio, L. Vigevano, On the boundary layer/riblets interaction mechanisms and the prediction of turbulent drag reduction, Int. J. Heat Fluid Flow 14(1993) 324-332. [16] O.A. El-Samni, H.H. Chun, H.S. Yoon, Drag reduction of turbulent flow over thin rectangular riblets, Int. J. Eng. Sci. 45(2007) 436-454. [17] J. Cui, Y. Fu, A numerical study on pressure drop in microchannel flow with different bionic micro-grooved surfaces, J. Bionic Eng. 9(2012) 99-109. [18] D.W. Bechert, W. Hage, Drag reduction with riblets in nature and engineering, in:R. Liebe (Ed.), Flow Phenomena in Nature, vol.2, Inspiration, Learning and Application, Wit Press, UK, 2006, pp. 457-504. [19] C.K. Chear, S.S. Dol, Vehicle aerodynamics:drag reduction by surface dimples, World Acad. Sci. Eng. Technol. Int. J. Mech. Aerospace, Ind. Mechatron. Manuf. Eng. 9(2015) 202-205. [20] O. Van Campenhout, M. Van Nesselrooij, L. Veldhuis, B. Van Oudheusden, F. Schrijer, Flow visualization over drag reducing dimpled surfaces in turbulent boundary layers using Particle Image Velocimetry, in:18th Int. Symp. Appl. Laser Imaging Tech. to Fluid Mech, 2016. [21] B. Zhou, X. Wang, W. Guo, W.M. Gho, S.K. Tan, Control of flow past a dimpled circular cylinder, Exp. Thermal Fluid Sci. 69(2015) 19-26. [22] E. Vervoort, Drag effect of dented surfaces in turbulent flows, in:27th AIAA Appl. Aerodyn. Conf, 2009, pp. 1-12. [23] U. Butt, L. Jehring, C. Egbers, Mechanism of drag reduction for circular cylinders with patterned surface, Int. J. Heat Fluid Flow 45(2014) 128-134. [24] H. Lienhart, M. Breuer, C. Köksoy, Drag reduction by dimples?-A complementary experimental/numerical investigation, Int. J. Heat Fluid Flow 29(2008) 783-791. [25] Y. Rao, C. Wan, S. Zang, Comparisons of flow friction and heat transfer performance in rectangular channels with pin-fin dimple, pin fin and dimples array, in:Proc. ASME Turbo Expo, 2010. [26] M. Quadrio, P. Ricco, Critical assessment of turbulent drag reduction through spanwise wall oscillations, J. Fluid Mech. 521(2004) 251-271. [27] K.-S. Choi, J.-R. DeBisschop, B.R. Clayton, Turbulent boundary-layer control by means of spanwise-wall oscillation, AIAA J. 36(1998) 1157-1163. [28] A. Yakeno, M.S. Techno, Transient dynamics and stability on spanwiseoscillatory turbulent channel, in:24th Int. Congr. Theor. Appl. Mech, 2016, pp. 10-12. [29] K. Choi, B.R. Clayton, The mechanism of turbulent drag reduction with wall oscillation.pdf, Int. J. Heat Fluid Flow 22(2001) 1-9. [30] W. Jung, N. Mangiavacchi, R. Akhavan, Suppression of turbulence in wallbounded flows by high-frequency spanwise oscillations, Phys. Fluids A Fluid 4(1992) 1605-1607. [31] R. Akhavan, W.J. Jung, N. Mangiavacchi, Turbulence control in wall-bounded flows by spanwise oscillations, Appl. Sci. Res. 51(1993) 299-303. [32] J. Choi, Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows, AIAA J. 40(2002) 842-850. [33] C.X. Xu, W.X. Huang, Transient response of Reynolds stress transport to spanwise wall oscillation in a turbulent channel flow, Phys. Fluids 17(2005) 6-9. [34] P. Ricco, Modification of near-wall turbulence due to spanwise wall oscillations, JoT. 5(2004) 1-18. [35] M. Gad-El-Hak, Compliant coatings:The simpler alternative, Exp. Thermal Fluid Sci. 16(1998) 141-156. [36] J.W. Fitzgerald, E.R. Fitzgerald, W.M. Carey, W.A. Von Winkle, Blubber and compliant coatings for drag reduction in water II. Matched shear impedance for compliant layer drag reduction, Mater. Sci. Eng. C 2(1995) 215-220. [37] M.O. Kramer, Boundary layer stabilization by distributed damping, J. Am. Soc. Nav. Eng. 72(1960) 25-34. [38] A.N.T. Tiong, P. Kumar, A. Saptoro, Reviews on drag reducing polymers, Korean J. Chem. Eng. 32(2015) 1455-1476. [39] K. Fukagata, S. Kern, P. Chatelain, Evolutionary Optimization of an Anisotropic Compliant Surface for Turbulent Friction Drag Reduction, 2008, pp. 37-41. [40] B.-G. Paik, G.-T. Yim, K.-Y. Kim, K.-S. Kim, The effects of microbubbles on skin friction in a turbulent boundary layer flow, Int. J. Multiphase Flow 80(2016) 164-175. [41] P.A. Serizawa, T. Inui, T. Yahiro, Z. Kawara, Pseudo-laminarization of microbubble containing milky bubbly flow in a pipe, Multiph. Sci. Technol. 17(2005) 79-101. [42] Y. Maeda, S. Hosokawa, Y. Baba, A. Tomiyama, Y. Ito, Generation mechanism of micro-bubbles in a pressurized dissolution method, Exp. Thermal Fluid Sci. 60(2015) 201-207. [43] H. Zhang, H. Meng, Q. Sun, J. Liu, W.J. Zhang, Multi-layer microbubbles by microfluidics, Engineering 05(2013) 146-148. [44] S. Deguchi, S. Takahashi, S. Tanimura, H. Hiraki, Producing single microbubbles with controlled size using microfiber, Adv. Biosci. Biotechnol. 2(2011) 385-390. [45] S.A. Mäkiharju, M. Perlin, S.L. Ceccio, On the energy economics of air lubrication drag reduction, Int. J. Nav. Archit. Ocean Eng. 4(2012) 412-422. [46] Y.A. Hassan, C.C. Gutierrez-Torres, Investigation of drag reduction mechanism by microbubble injection within a channel boundary layer using particle tracking velocimetry, Nucl. Eng. Technol. 38(2006) 763-778. [47] C.C. Gutierrez-Torres, Y.A. Hassan, J.A.J. Bernal, J.G.B. Saldana, Drag reduction by microbubble injection in a channel flow, Rev. Mex. Fis. 54(2008) 8-14. [48] J. Ortiz-Villafuerte, Y.A. Hassan, Investigation of microbubble boundary layer using particle tracking velocimetry, J. Fluids Eng. 128(2006) 507. [49] M. Mccormick, R. Bhattacharyya, Drag reduction of a submersible hull by electrolysis, Nav. Eng. J. (1973) 11-16. [50] K. Aroonrat, S. Wongwises, Experimental study on two-phase condensation heat transfer and pressure drop of R-134a flowing in a dimpled tube, Int. J. Heat Mass Transf. 106(2017) 437-448. [51] A.I. Leontiev, N.A. Kiselev, S.A. Burtsev, M.M. Strongin, Y.A. Vinogradov, Experimental investigation of heat transfer and drag on surfaces with spherical dimples, Exp. Thermal Fluid Sci. 79(2016) 74-84. [52] K.-S. Choi, X. Yang, B.R. Clayton, E.J. Glover, M. Atlar, B.N. Semenov, V.M. Kulik, Turbulent drag reduction using compliant surfaces, Proc. R. Soc. A Math. Phys. Eng. Sci. 453(1997) 2229-2240. [53] A. Kitagawa, P. Denissenko, Y. Murai, Effect of wall surface wettability on collective behavior of hydrogen microbubbles rising along a wall, Exp. Thermal Fluid Sci. 80(2017) 126-138. [54] W.C. Sanders, S.L. Ceccio, E.M. Ivy, M. Perlin, D.R. Dowling, Microbubble drag reduction at high Reynolds number, in:4th ASME JSME Jt. Fluids Eng. Conf, 2003, pp. 1-13. [55] S. Baraskar, K.R.A.A. Lanjewar, Experimental investigation of heat transfer and friction factor of V-shaped rib roughed duct with and without gap, Int. J. Eng. Res. Appl. 2(2012) 1024-1031. [56] A. Kumar, M.-H. Kim, CFD analysis on the thermal hydraulic performance of an SAH duct with multi V-shape roughened ribs, Energies. 9(2016) 415. [57] K. Suzuki, K. Yuki, M. Mochizuki, Application of Boiling Heat Transfer to HighHeat-Flux Cooling Technology in Power Electronics, Transactions of the Japan Institute of Electronics Packaging 4(1) (2011) 127-133. [58] J. Choi, W.P. Jeon, H. Choi, Mechanism of drag reduction by dimples on a sphere, Phys. Fluids 18(2006) 2006-2009. [59] S. Supriadi, G. Gunawan, Y. Yanuar, H. Sulistyo Budhi, The replication of micro-riblets on ship hulls for drag reduction applications, Int. J. Technol. 6(2015) 983. [60] Yanuar, Gunawan, A. Jamaluddin Sunaryo, Micro-bubble drag reduction on a high speed vessel model, J. Mar. Sci. Appl. 11(2012) 301-304. [61] H. Sayyaadi, M. Nematollahi, Determination of optimum injection flow rate to achieve maximum micro bubble drag reduction in ships; an experimental approach, Sci. Iran. 20(2013) 535-541. [62] P.R. Viswanath, Aircraft viscous drag reduction using riblets, Prog. Aerosp. Sci. 38(2002) 571-600. [63] E. Unger, T. Porter, J. Lindner, P. Grayburn, Cardiovascular drug delivery with ultrasound and microbubbles, Adv. Drug Deliv. Rev. 72(2014) 110-126. [64] R. Martínez-Palou, M. de L. Mosqueira, B. Zapata-Rendón, E. Mar-Juárez, C. Bernal-Huicochea, J. de la Cruz Clavel-López, J. Aburto, Transportation of heavy and extra-heavy crude oil by pipeline:A review, J. Pet. Sci. Eng. 75(2011) 274-282. [65] E.D. Burger, W.R. Munk, H.A. Wahl, Flow increase in the Trans Alaska Pipeline through use of a polymeric drag-reducing additive, Soc. Pet. Eng. AIME (1982) 377-386. [66] G.E. Gadd, Reduction of turbulent friction in liquids by dissolved additives, Nature. 212(1966) 874-877. [67] S.T. Lim, H.J. Choi, S.Y. Lee, J.S. So, C.K. Chan, k-DNA induced turbulent drag reduction and its characteristics, Macromolecules. 36(2003) 5348-5354. [68] J. Drappier, T. Divoux, Y. Amarouchene, F. Bertrand, S. Rodts, O. Cadot, J. Meunier, D. Bonn, Turbulent drag reduction by surfactants, Europhys. Lett. 74(2006) 362-368. [69] D. Ohlendorf, W. Interthal, H. Hoffman, Surfactant systems for drag reduction:Physico-chemical properties and rheological behaviour, Rheol. Acta 25(1986) 468-486. [70] Y. Kawaguchi, T. Segawa, Z. Feng, P. Li, Experimental study on drag-reducing channel flow with surfactant additives-Spatial structure of turbulence investigated by PIV system, Int. J. Heat Fluid Flow 23(2002) 700-709. [71] F.C. Li, Y. Kawaguchi, B. Yu, J.J. Wei, K. Hishida, Experimental study of dragreduction mechanism for a dilute surfactant solution flow, Int. J. Heat Mass Transf. 51(2008) 835-843. [72] J.L. Zakin, B. Lu, H.-W. Bewersdorff, Surfactant drag reduction, Rev. Chem. Eng. 14(1998) 1-5. [73] I.T. Dosunmu, S.N. Shah, Steady Shear and Dynamic Properties of Drag Reducing Surfactant Solutions, Appl. Rheol. 25(2015) 12539. [74] E. Suali, A.B. Hayder, Z. Hasan, M. Rahman, The study of glycolic acid ethoylate 4-nonylphenyl ether on drug reduction, J. Appl. Sci. 10(2010) 2683-2687. [75] R.C. Vaseleski, A.B. Metzner, Drag reduction in the turbulent flow of fiber suspensions, AICHE J. 20(1974) 301-306. [76] R.J. Pirih, W.M. Swanson, Drag reduction and turbulence modification in rigid particle suspensions, Can. J. Chem. Eng. 50(1972) 221-227. [77] P. Peyser, S.C. Branch, The drag reduction of chrysotile asbestos dispersions, J. Appl. Polym. Sci. 17(1973) 421-431. [78] A.A.B. Hayder, A.H. Nour, K. Kor, A.N. Abdalla, Investigating the effect of solid particle addition on the turbulent multiphase flow in pipelines, Int. J. Phys. 6(2011) 3672-3679. [79] H.A. Abdulbari, S. Nuraffini Bt, R.M.Y. Kamarulizam, A. Gupta, Introducing slag powder as drag reduction agent in pipeline:An experimental approach, Sci. Res. Essays 7(2012) 1768-1776. [80] T. Kubo, S. Ogata, Flow properties of bamboo fiber suspensions, in:Proc. ASME 2012 Int. Mech. Eng. Congr. Expo, 2012, pp. 2-7. [81] W. Wulandari, K.T. W., S. M., Yanuar, M.A. Talahatu, Effect of coconut fiber suspensions on drag reduction in circular pipe, in:IOP Conf. Ser. Earth Environ. Sci, 105, 2018. [82] H.A. Abdulbari, R.B.M. Yunus, Drag reduction improvement in two phase flow system using traces of SLES surfactant, Asian J. Ind. Eng. 2(2010) 17-27. [83] H.D. Ellis, Effects of shear treatment on drag-reducing polymer solutions and fibre suspensions, Nat. Publ. 228(1970) 361-362. [84] I. Radin, J.L. Zakin, G.K. Patterson, Drag reduction in solid-fluid systems, AICHE J. 21(1975) 358-371. [85] W.K. Lee, R.C. Vaseleski, A.B. Metzner, Turbulent drag reduction in polymeric solutions containing suspended fibers, AICHE J. 20(1974) 128-133. [86] M.J. Scott, M.N. Jones, The Biodegradation of Surfactants in the Environment, 2000, p. 1508. [87] M. Hellsten, Drag-Reducing Surfactants, Journal of Surfactants & Detergents 5(1) (2002) 65-70. [88] P.R. Modak, H. Usui, H. Suzuki, Agglomeration Control of Ice Particles in Ice-Water Slurry System Using Surfactant Additives, HVAC&R Research 8(4) (2002) 453-466. [89] P. Srivastava, L. Castro, B.H. Incorporated, Successful Field Application of Surfactant Additives to Enhance Thermal, SPE Middle East Oil and Gas Show and Conference, Society of Petroleum Engineers, Bahrain (2011) 1-7. [90] S. Gharehkhani, H. Yarmand, M. Shahab, S. Farid, S. Shirazi, A. Amiri, M. Nashrul, M. Zubir, K. Solangi, R. Ibrahim, S. Newaz, S. Wongwises, Experimental investigation on rheological, momentum and heat transfer characteristics of flowing fiber crop suspensions, Int. Commun. Heat Mass Transfer 80(2017) 60-69. [91] J.L. Lumley, Drag reduction by additives, Annu. Rev. Fluid Mech. 1(1969) 367-384. [92] J.L. Lumley, Drag reduction in two phase and polymer flows, Phys. Fluids 20(1977) S64. [93] P.S. Virk, Drag reduction fundamentals, AICHE J. 21(1975) 625-656. [94] N.S. Berman, Evidence for molecular interactions in drag reduction in turbulent pipe flows, Polym. Eng. Sci. 20(1980) 451-455. [95] J.M.J. Toonder, M.A. Hulsen, G.D.C. Kuiken, F.T.M. Nieuwstadt, Drag reduction by polymer additives in a turbulent pipe ow:Numerical and laboratory experiments, J. Fluid Mech. 337(1997) 193-231. [96] W. Brostow, Drag reduction in flow:Review of applications, mechanism and prediction, J. Ind. Eng. Chem. 14(2008) 409-416. [97] W. Brostow, S. Majumdar, R.P. Singh, Drag reduction and solvation in polymer solutions, Macromol. Rapid Commun. 20(1999) 144-147. [98] J.T. Kim, C.A. Kim, K. Zhang, C.H. Jang, H.J. Choi, Effect of polymer-surfactant interaction on its turbulent drag reduction, Colloids Surf. A Physicochem. Eng. Asp. 391(2011) 125-129. [99] V.N. Manzhai, Y.R. Nasibullina, A.S. Kuchevskaya, A.G. Filimoshkin, Physicochemical concept of drag reduction nature in dilute polymer solutions (the Toms effect), Chem. Eng. Process. Process Intensif. 80(2014) 38-42. [100] T. Min, J.Y. Yoo, H. Choi, D.D. Joseph, Drag reduction by polymer additives in a turbulent channel flow, J. Fluid Mech. 486(2003) 213-238. [101] J.N. Marhefka, P.J. Marascalco, T.M. Chapman, A.J. Russell, M.V. Kameneva, Poly(N-vinylformamide) a drag-reducing polymer for biomedical applications, Biomacromolecules. 7(2006) 1597-1603. [102] P.K. Ptasinski, F.T.M. Nieuwstadt, B.H.A.A. Van Den Brule, M.A. Hulsen, Experiments in turbulent pipe flow with polymer additives at maximum drag reduction, Flow Turbul. Combust. 66(2001) 159-182. [103] E. De Angelis, C.M. Casciola, R. Piva, Turbulent energy routes in viscoelastic wall turbulence, J. Phys. Conf. Ser. 318(2011) 092012. [104] M.P. Escudier, A.K. Nickson, R.J. Poole, Turbulent flow of viscoelastic shearthinning liquids through a rectangular duct:Quantification of turbulence anisotropy, J. Nonnewton. Fluid Mech. 160(2009) 2-10. [105] R.E. Smith, W.G. Tiederman, The mechanism of polymer thread drag reduction, Rheol. Acta 30(1991) 103-113. [106] B.A. Jubran, Y.H. Zurigat, M.F.A. Goosen, Drag reducing agents in multiphase flow pipelines:Recent trends and future needs, Pet. Sci. Technol. 23(2005) 1403-1424. [107] J. Shanshool, H.M.. Al-Qamaje, Effect of molecular weight on turbulent drag reduction with polyisobutylene, NUCEJ Spat. 11(2008) 52-59. [108] A.S. Pereira, F.T. Pinho, Turbulent pipe flow characteristics of low molecular weight polymer solution, J. Nonnewton. Fluid Mech. (1994) 312-344. [109] T. Nakken, M. Tande, B. Nyström, Effects of molar mass, concentration and thermodynamic conditions on polymer-induced flow drag reduction, Eur. Polym. J. 40(2004) 181-186. [110] C.F. Li, R. Sureshkumar, B. Khomami, Influence of rheological parameters on polymer induced turbulent drag reduction, J. Nonnewton. Fluid Mech. 140(2006) 23-40. [111] R. Benzi, A short review on drag reduction by polymers in wall bounded turbulence, Phys. D Nonlinear Phenom. 239(2010) 1338-1345. [112] J.D. Culter, J.L. Zakin, G.K. Patterson, Mechanical degradation of dilute solutions of high polymers in capillary tube flow, J. Appl. Polym. Sci. 19(1975) 3235-3240. [113] A.F. Horn, E.W. Merrill, Midpoint scission of macromolecules in dilute solution in turbulent flow, Nat. Publ. (1984) 312. [114] T. Moussa, C. Tiu, Factors affecting polymer degradation in turbulent pipe flow, Chem. Eng. Sci. 49(1994) 1681-1692. [115] R.Y. Ting, R.C. Little, Characterization of drag reduction and degradation effects in the turbulent pipe flow of dilute polymer solutions, J. Appl. Polym. Sci. 17(1973) 3345-3356. [116] H.J. Choi, C.A. Kim, J.I. Sohn, M.S. Jhon, Exponential decay function for polymer degradation in turbulent drag reduction, Polym. Degrad. Stab. 69(2000) 341-346. [117] J. Shanshool, F.A. M., I.N. Slaiman, The influence of mechanical effects on degradation of polyisobutylene as drag reducing agent, Pet. Coal. 53(2011) 218-222. [118] H.A. Abdulbari, A. Shabirin, H.N. Abdurrahman, Bio-polymers for improving liquid flow in pipelines-A review and future work opportunities, J. Ind. Eng. Chem. 20(2014) 1157-1170. [119] K. Zhang, G. Hyun, H. Jin, Mechanical degradation of water-soluble acrylamide copolymer under a turbulent flow:Effect of molecular weight and temperature, J. Ind. Eng. Chem. 33(2016) 156-161. [120] A.A. Khadom, A.A. Abdul-Hadi, Performance of polyacrylamide as drag reduction polymer of crude petroleum flow, Ain Shams Eng. J. 5(2014) 861-865. [121] M.H. Hassanean, M.E. Awad, H. Marwan, A.A. Bhran, M. Kaoud, Studying the rheological properties and the influence of drag reduction on a waxy crude oil in pipeline flow, Egypt. J. Pet. 25(2016) 39-44. https://doi.org/10.1016/j.ejpe.2015.02.013. [122] N.J. Kim, S. Kim, S.H. Lim, K. Chen, W. Chun, Measurement of drag reduction in polymer added turbulent flow, Int. Commun. Heat Mass Transfer 36(2009) 1014-1019. [123] R.H.J. Sellin, Drag reduction in sewers:First results from a permanent installation, J. Hydraul. Res. 16(1978) 357-371. [124] J.N. Marhefka, M.V. Kameneva, Natural Drag-Reducing Polymers:Discovery, Characterization and Potential Clinical Applications, Fluids 1 (2) (2016) 6. [125] Z. Matras, B. Kopiczak, Intensification of drag reduction effect by simultaneous addition of surfactant and high molecular polymer into the solvent, Chem. Eng. Res. Des. 96(2015) 35-42. [126] K. Gasljevic, K. Hall, D. Chapman, E.F. Matthys, Drag-reducing polysaccharides from marine microalgae:Species productivity and drag reduction effectiveness, J. Appl. Phycol. 20(2008) 299-310. [127] H.J. Choi, S.T. Lim, P.Y. Lai, C.K. Chan, Turbulent drag reduction and degradation of DNA, Phys. Rev. Lett. 89(2002) 088302/1-088302/4. [128] A. Hayder, M. Rosli, Studying the effect addition of okra-natural mucilage as drag reducing agent in different size of pipes in turbulent water flowing system, in:Natl. Conf. Postgrad. Res., 2009, pp. 128-133. [129] S.S. Salehudin, S. Ridha, Coconut residue as biopolymer drag reducer agent in water injection system, Int. J. Appl. Eng. Res. 11(2016) 8037-8040. [130] H. Kaur, A.P.G. Singh, A. Jaafar, U.T. Petronas, The study of drag reduction ability of naturally produced polymers from local plant source, in:Int. Pet. Technol. Conf, 2013. [131] P.R. Kenis, Turbulent Flow Friction Reduction Effectiveness and Hydrodynamic Degradation of Polysaccharides and Synthetic Polymers, Journal of Applied Polymer Science 15(1971) 607-618. [132] R.P. Singh, S. Pal, S. Krishnamoorthy, P. Adhikary, S.A. Ali, High-technology materials based on modified polysaccharides, Pure Appl. Chem. 81(2009) 525-547. [133] C.M. White, M.G. Mungal, Mechanics and prediction of turbulent drag reduction with polymer additives, Annu. Rev. Fluid Mech. 40(2008) 235-256. |