中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (8): 1921-1932.DOI: 10.1016/j.cjche.2019.03.003
• Chemical Engineering Thermodynamics • 上一篇 下一篇
M. A. Asidin, E. Suali, T. Jusnukin, F. A. Lahin
收稿日期:
2017-12-19
修回日期:
2019-03-04
出版日期:
2019-08-28
发布日期:
2019-11-16
通讯作者:
E. Suali
基金资助:
M. A. Asidin, E. Suali, T. Jusnukin, F. A. Lahin
Received:
2017-12-19
Revised:
2019-03-04
Online:
2019-08-28
Published:
2019-11-16
Contact:
E. Suali
Supported by:
摘要: Drag reduction phenomenon in pipelines has received lots of attention during the past decades due to its potential engineering applications, especially in fluid transporting industries. Various methods to enhance drag reduction have been developed throughout the years and divided into two categories; non-additives method and additives method. Both categories have different types of methods, with different formulations and applications which will generally be discussed in this review. Among all the methods discussed, drag reduction using polymer additive is as one of the most enticing and desirable methods. It has been the subject of research in this field and has been studied extensively for quite some time. It is due to its ability to reduce drag up to 80% when added in minute concentrations. Reducing drag in the pipe will require less pumping power thus offering economic relieves to the industries. So, this paper will be focusing more on the use of polymer additives as drag reducing agent, the general formulations of the additives, major issues involving the use of drag reducing polymers, and the potential applications of it. However, despite the extensive works of drag reduction polymer, there are still no models that accurately explain the mechanism of drag reduction. More studies needed to be done to have a better understanding of the phenomenon. Therefore, future research areas and potential approaches are proposed for future work.
M. A. Asidin, E. Suali, T. Jusnukin, F. A. Lahin. Review on the applications and developments of drag reducing polymer in turbulent pipe flow[J]. 中国化学工程学报, 2019, 27(8): 1921-1932.
M. A. Asidin, E. Suali, T. Jusnukin, F. A. Lahin. Review on the applications and developments of drag reducing polymer in turbulent pipe flow[J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1921-1932.
[1] Q. Muslim, A. Ali, Drag force reduction of flowing crude oil by polymers addition, Iraqi J. Mech. Mater. Eng. 8(2008) 149-161. [2] H.A. Abdulbari, R.M. Yunus, N.H. Abdurahman, A. Charles, Going against the flow-A review of non-additive means of drag reduction, J. Ind. Eng. Chem. 19(2013) 27-36. [3] V. Truong, Drag Reduction Technologies, 2001. [4] P. Diamond, J. Harvey, J. Katz, D. Nelson, P. Steinhardt, Drag Reduction by Polymer Additives, vol. 3481, 1992, pp. 1-53. [5] R.C.R. Figueredo, E. Sabadini, Firefighting foam stability:The effect of the drag reducer poly(ethylene) oxide, Colloids Surf. A Physicochem. Eng. Asp. 215(2003) 77-86. [6] M.M.A. El-azm, S.Z. Kassab, S.A. Elshafie, Experimental and Numerical Study for Turbulent Flow Drag Reduction in District Cooling Systems, vol. 6, 2014, pp. 113-125. [7] A. Al-Sarkhi, Drag reduction with polymers in gas-liquid/liquid-liquid flows in pipes:A literature review, J. Nat. Gas Sci. Eng. 2(2010) 41-48. [8] M. Al-Yaari, A. Soleimani, B. Abu-Sharkh, U. Al-Mubaiyedh, A. Al-Sarkhi, Effect of drag reducing polymers on oil-water flow in a horizontal pipe, Int. J. Multiphase Flow 35(2009) 516-524. [9] A. Abubakar, T. Al-Wahaibi, Y. Al-Wahaibi, A.R. Al-Hashmi, A. Al-Ajmi, Roles of drag reducing polymers in single-and multi-phase flows, Chem. Eng. Res. Des. 92(2014) 2153-2181. [10] R. García-Mayoral, J. Jiménez, Drag reduction by riblets, Philos. Transact. A Math. Phys. Eng. Sci. 369(2011) 1412-1427. [11] S. Martin, B. Bhushan, Modeling and optimization of shark-inspired riblet geometries for low drag applications, J. Colloid Interface Sci. 474(2016) 206-215. [12] M. Perlin, D.R. Dowling, S.L. Ceccio, Freeman scholar review:Passive and active skin friction drag reduction in turbulent boundary layers, J. Fluids Eng. 138(2016) 091104. [13] W. Raschi, J. Musick, Hydrodynamic Aspects of Shark Scales, 1986. [14] S.P. Wilkinson, J.B. Anders, B.S. Lazos, D.M. Bushnell, Turbulent drag reduction research at NASA Langley:Progress and plans, Int. J. Heat Fluid Flow 9(1988) 266-277. [15] A. Baron, M. Quadrio, L. Vigevano, On the boundary layer/riblets interaction mechanisms and the prediction of turbulent drag reduction, Int. J. Heat Fluid Flow 14(1993) 324-332. [16] O.A. El-Samni, H.H. Chun, H.S. Yoon, Drag reduction of turbulent flow over thin rectangular riblets, Int. J. Eng. Sci. 45(2007) 436-454. [17] J. Cui, Y. Fu, A numerical study on pressure drop in microchannel flow with different bionic micro-grooved surfaces, J. Bionic Eng. 9(2012) 99-109. [18] D.W. Bechert, W. Hage, Drag reduction with riblets in nature and engineering, in:R. Liebe (Ed.), Flow Phenomena in Nature, vol.2, Inspiration, Learning and Application, Wit Press, UK, 2006, pp. 457-504. [19] C.K. Chear, S.S. Dol, Vehicle aerodynamics:drag reduction by surface dimples, World Acad. Sci. Eng. Technol. Int. J. Mech. Aerospace, Ind. Mechatron. Manuf. Eng. 9(2015) 202-205. [20] O. Van Campenhout, M. Van Nesselrooij, L. Veldhuis, B. Van Oudheusden, F. Schrijer, Flow visualization over drag reducing dimpled surfaces in turbulent boundary layers using Particle Image Velocimetry, in:18th Int. Symp. Appl. Laser Imaging Tech. to Fluid Mech, 2016. [21] B. Zhou, X. Wang, W. Guo, W.M. Gho, S.K. Tan, Control of flow past a dimpled circular cylinder, Exp. Thermal Fluid Sci. 69(2015) 19-26. [22] E. Vervoort, Drag effect of dented surfaces in turbulent flows, in:27th AIAA Appl. Aerodyn. Conf, 2009, pp. 1-12. [23] U. Butt, L. Jehring, C. Egbers, Mechanism of drag reduction for circular cylinders with patterned surface, Int. J. Heat Fluid Flow 45(2014) 128-134. [24] H. Lienhart, M. Breuer, C. Köksoy, Drag reduction by dimples?-A complementary experimental/numerical investigation, Int. J. Heat Fluid Flow 29(2008) 783-791. [25] Y. Rao, C. Wan, S. Zang, Comparisons of flow friction and heat transfer performance in rectangular channels with pin-fin dimple, pin fin and dimples array, in:Proc. ASME Turbo Expo, 2010. [26] M. Quadrio, P. Ricco, Critical assessment of turbulent drag reduction through spanwise wall oscillations, J. Fluid Mech. 521(2004) 251-271. [27] K.-S. Choi, J.-R. DeBisschop, B.R. Clayton, Turbulent boundary-layer control by means of spanwise-wall oscillation, AIAA J. 36(1998) 1157-1163. [28] A. Yakeno, M.S. Techno, Transient dynamics and stability on spanwiseoscillatory turbulent channel, in:24th Int. Congr. Theor. Appl. Mech, 2016, pp. 10-12. [29] K. Choi, B.R. Clayton, The mechanism of turbulent drag reduction with wall oscillation.pdf, Int. J. Heat Fluid Flow 22(2001) 1-9. [30] W. Jung, N. Mangiavacchi, R. Akhavan, Suppression of turbulence in wallbounded flows by high-frequency spanwise oscillations, Phys. Fluids A Fluid 4(1992) 1605-1607. [31] R. Akhavan, W.J. Jung, N. Mangiavacchi, Turbulence control in wall-bounded flows by spanwise oscillations, Appl. Sci. Res. 51(1993) 299-303. [32] J. Choi, Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows, AIAA J. 40(2002) 842-850. [33] C.X. Xu, W.X. Huang, Transient response of Reynolds stress transport to spanwise wall oscillation in a turbulent channel flow, Phys. Fluids 17(2005) 6-9. [34] P. Ricco, Modification of near-wall turbulence due to spanwise wall oscillations, JoT. 5(2004) 1-18. [35] M. Gad-El-Hak, Compliant coatings:The simpler alternative, Exp. Thermal Fluid Sci. 16(1998) 141-156. [36] J.W. Fitzgerald, E.R. Fitzgerald, W.M. Carey, W.A. Von Winkle, Blubber and compliant coatings for drag reduction in water II. Matched shear impedance for compliant layer drag reduction, Mater. Sci. Eng. C 2(1995) 215-220. [37] M.O. Kramer, Boundary layer stabilization by distributed damping, J. Am. Soc. Nav. Eng. 72(1960) 25-34. [38] A.N.T. Tiong, P. Kumar, A. Saptoro, Reviews on drag reducing polymers, Korean J. Chem. Eng. 32(2015) 1455-1476. [39] K. Fukagata, S. Kern, P. Chatelain, Evolutionary Optimization of an Anisotropic Compliant Surface for Turbulent Friction Drag Reduction, 2008, pp. 37-41. [40] B.-G. Paik, G.-T. Yim, K.-Y. Kim, K.-S. Kim, The effects of microbubbles on skin friction in a turbulent boundary layer flow, Int. J. Multiphase Flow 80(2016) 164-175. [41] P.A. Serizawa, T. Inui, T. Yahiro, Z. Kawara, Pseudo-laminarization of microbubble containing milky bubbly flow in a pipe, Multiph. Sci. Technol. 17(2005) 79-101. [42] Y. Maeda, S. Hosokawa, Y. Baba, A. Tomiyama, Y. Ito, Generation mechanism of micro-bubbles in a pressurized dissolution method, Exp. Thermal Fluid Sci. 60(2015) 201-207. [43] H. Zhang, H. Meng, Q. Sun, J. Liu, W.J. Zhang, Multi-layer microbubbles by microfluidics, Engineering 05(2013) 146-148. [44] S. Deguchi, S. Takahashi, S. Tanimura, H. Hiraki, Producing single microbubbles with controlled size using microfiber, Adv. Biosci. Biotechnol. 2(2011) 385-390. [45] S.A. Mäkiharju, M. Perlin, S.L. Ceccio, On the energy economics of air lubrication drag reduction, Int. J. Nav. Archit. Ocean Eng. 4(2012) 412-422. [46] Y.A. Hassan, C.C. Gutierrez-Torres, Investigation of drag reduction mechanism by microbubble injection within a channel boundary layer using particle tracking velocimetry, Nucl. Eng. Technol. 38(2006) 763-778. [47] C.C. Gutierrez-Torres, Y.A. Hassan, J.A.J. Bernal, J.G.B. Saldana, Drag reduction by microbubble injection in a channel flow, Rev. Mex. Fis. 54(2008) 8-14. [48] J. Ortiz-Villafuerte, Y.A. Hassan, Investigation of microbubble boundary layer using particle tracking velocimetry, J. Fluids Eng. 128(2006) 507. [49] M. Mccormick, R. Bhattacharyya, Drag reduction of a submersible hull by electrolysis, Nav. Eng. J. (1973) 11-16. [50] K. Aroonrat, S. Wongwises, Experimental study on two-phase condensation heat transfer and pressure drop of R-134a flowing in a dimpled tube, Int. J. Heat Mass Transf. 106(2017) 437-448. [51] A.I. Leontiev, N.A. Kiselev, S.A. Burtsev, M.M. Strongin, Y.A. Vinogradov, Experimental investigation of heat transfer and drag on surfaces with spherical dimples, Exp. Thermal Fluid Sci. 79(2016) 74-84. [52] K.-S. Choi, X. Yang, B.R. Clayton, E.J. Glover, M. Atlar, B.N. Semenov, V.M. Kulik, Turbulent drag reduction using compliant surfaces, Proc. R. Soc. A Math. Phys. Eng. Sci. 453(1997) 2229-2240. [53] A. Kitagawa, P. Denissenko, Y. Murai, Effect of wall surface wettability on collective behavior of hydrogen microbubbles rising along a wall, Exp. Thermal Fluid Sci. 80(2017) 126-138. [54] W.C. Sanders, S.L. Ceccio, E.M. Ivy, M. Perlin, D.R. Dowling, Microbubble drag reduction at high Reynolds number, in:4th ASME JSME Jt. Fluids Eng. Conf, 2003, pp. 1-13. [55] S. Baraskar, K.R.A.A. Lanjewar, Experimental investigation of heat transfer and friction factor of V-shaped rib roughed duct with and without gap, Int. J. Eng. Res. Appl. 2(2012) 1024-1031. [56] A. Kumar, M.-H. Kim, CFD analysis on the thermal hydraulic performance of an SAH duct with multi V-shape roughened ribs, Energies. 9(2016) 415. [57] K. Suzuki, K. Yuki, M. Mochizuki, Application of Boiling Heat Transfer to HighHeat-Flux Cooling Technology in Power Electronics, Transactions of the Japan Institute of Electronics Packaging 4(1) (2011) 127-133. [58] J. Choi, W.P. Jeon, H. Choi, Mechanism of drag reduction by dimples on a sphere, Phys. Fluids 18(2006) 2006-2009. [59] S. Supriadi, G. Gunawan, Y. Yanuar, H. Sulistyo Budhi, The replication of micro-riblets on ship hulls for drag reduction applications, Int. J. Technol. 6(2015) 983. [60] Yanuar, Gunawan, A. Jamaluddin Sunaryo, Micro-bubble drag reduction on a high speed vessel model, J. Mar. Sci. Appl. 11(2012) 301-304. [61] H. Sayyaadi, M. Nematollahi, Determination of optimum injection flow rate to achieve maximum micro bubble drag reduction in ships; an experimental approach, Sci. Iran. 20(2013) 535-541. [62] P.R. Viswanath, Aircraft viscous drag reduction using riblets, Prog. Aerosp. Sci. 38(2002) 571-600. [63] E. Unger, T. Porter, J. Lindner, P. Grayburn, Cardiovascular drug delivery with ultrasound and microbubbles, Adv. Drug Deliv. Rev. 72(2014) 110-126. [64] R. Martínez-Palou, M. de L. Mosqueira, B. Zapata-Rendón, E. Mar-Juárez, C. Bernal-Huicochea, J. de la Cruz Clavel-López, J. Aburto, Transportation of heavy and extra-heavy crude oil by pipeline:A review, J. Pet. Sci. Eng. 75(2011) 274-282. [65] E.D. Burger, W.R. Munk, H.A. Wahl, Flow increase in the Trans Alaska Pipeline through use of a polymeric drag-reducing additive, Soc. Pet. Eng. AIME (1982) 377-386. [66] G.E. Gadd, Reduction of turbulent friction in liquids by dissolved additives, Nature. 212(1966) 874-877. [67] S.T. Lim, H.J. Choi, S.Y. Lee, J.S. So, C.K. Chan, k-DNA induced turbulent drag reduction and its characteristics, Macromolecules. 36(2003) 5348-5354. [68] J. Drappier, T. Divoux, Y. Amarouchene, F. Bertrand, S. Rodts, O. Cadot, J. Meunier, D. Bonn, Turbulent drag reduction by surfactants, Europhys. Lett. 74(2006) 362-368. [69] D. Ohlendorf, W. Interthal, H. Hoffman, Surfactant systems for drag reduction:Physico-chemical properties and rheological behaviour, Rheol. Acta 25(1986) 468-486. [70] Y. Kawaguchi, T. Segawa, Z. Feng, P. Li, Experimental study on drag-reducing channel flow with surfactant additives-Spatial structure of turbulence investigated by PIV system, Int. J. Heat Fluid Flow 23(2002) 700-709. [71] F.C. Li, Y. Kawaguchi, B. Yu, J.J. Wei, K. Hishida, Experimental study of dragreduction mechanism for a dilute surfactant solution flow, Int. J. Heat Mass Transf. 51(2008) 835-843. [72] J.L. Zakin, B. Lu, H.-W. Bewersdorff, Surfactant drag reduction, Rev. Chem. Eng. 14(1998) 1-5. [73] I.T. Dosunmu, S.N. Shah, Steady Shear and Dynamic Properties of Drag Reducing Surfactant Solutions, Appl. Rheol. 25(2015) 12539. [74] E. Suali, A.B. Hayder, Z. Hasan, M. Rahman, The study of glycolic acid ethoylate 4-nonylphenyl ether on drug reduction, J. Appl. Sci. 10(2010) 2683-2687. [75] R.C. Vaseleski, A.B. Metzner, Drag reduction in the turbulent flow of fiber suspensions, AICHE J. 20(1974) 301-306. [76] R.J. Pirih, W.M. Swanson, Drag reduction and turbulence modification in rigid particle suspensions, Can. J. Chem. Eng. 50(1972) 221-227. [77] P. Peyser, S.C. Branch, The drag reduction of chrysotile asbestos dispersions, J. Appl. Polym. Sci. 17(1973) 421-431. [78] A.A.B. Hayder, A.H. Nour, K. Kor, A.N. Abdalla, Investigating the effect of solid particle addition on the turbulent multiphase flow in pipelines, Int. J. Phys. 6(2011) 3672-3679. [79] H.A. Abdulbari, S. Nuraffini Bt, R.M.Y. Kamarulizam, A. Gupta, Introducing slag powder as drag reduction agent in pipeline:An experimental approach, Sci. Res. Essays 7(2012) 1768-1776. [80] T. Kubo, S. Ogata, Flow properties of bamboo fiber suspensions, in:Proc. ASME 2012 Int. Mech. Eng. Congr. Expo, 2012, pp. 2-7. [81] W. Wulandari, K.T. W., S. M., Yanuar, M.A. Talahatu, Effect of coconut fiber suspensions on drag reduction in circular pipe, in:IOP Conf. Ser. Earth Environ. Sci, 105, 2018. [82] H.A. Abdulbari, R.B.M. Yunus, Drag reduction improvement in two phase flow system using traces of SLES surfactant, Asian J. Ind. Eng. 2(2010) 17-27. [83] H.D. Ellis, Effects of shear treatment on drag-reducing polymer solutions and fibre suspensions, Nat. Publ. 228(1970) 361-362. [84] I. Radin, J.L. Zakin, G.K. Patterson, Drag reduction in solid-fluid systems, AICHE J. 21(1975) 358-371. [85] W.K. Lee, R.C. Vaseleski, A.B. Metzner, Turbulent drag reduction in polymeric solutions containing suspended fibers, AICHE J. 20(1974) 128-133. [86] M.J. Scott, M.N. Jones, The Biodegradation of Surfactants in the Environment, 2000, p. 1508. [87] M. Hellsten, Drag-Reducing Surfactants, Journal of Surfactants & Detergents 5(1) (2002) 65-70. [88] P.R. Modak, H. Usui, H. Suzuki, Agglomeration Control of Ice Particles in Ice-Water Slurry System Using Surfactant Additives, HVAC&R Research 8(4) (2002) 453-466. [89] P. Srivastava, L. Castro, B.H. Incorporated, Successful Field Application of Surfactant Additives to Enhance Thermal, SPE Middle East Oil and Gas Show and Conference, Society of Petroleum Engineers, Bahrain (2011) 1-7. [90] S. Gharehkhani, H. Yarmand, M. Shahab, S. Farid, S. Shirazi, A. Amiri, M. Nashrul, M. Zubir, K. Solangi, R. Ibrahim, S. Newaz, S. Wongwises, Experimental investigation on rheological, momentum and heat transfer characteristics of flowing fiber crop suspensions, Int. Commun. Heat Mass Transfer 80(2017) 60-69. [91] J.L. Lumley, Drag reduction by additives, Annu. Rev. Fluid Mech. 1(1969) 367-384. [92] J.L. Lumley, Drag reduction in two phase and polymer flows, Phys. Fluids 20(1977) S64. [93] P.S. Virk, Drag reduction fundamentals, AICHE J. 21(1975) 625-656. [94] N.S. Berman, Evidence for molecular interactions in drag reduction in turbulent pipe flows, Polym. Eng. Sci. 20(1980) 451-455. [95] J.M.J. Toonder, M.A. Hulsen, G.D.C. Kuiken, F.T.M. Nieuwstadt, Drag reduction by polymer additives in a turbulent pipe ow:Numerical and laboratory experiments, J. Fluid Mech. 337(1997) 193-231. [96] W. Brostow, Drag reduction in flow:Review of applications, mechanism and prediction, J. Ind. Eng. Chem. 14(2008) 409-416. [97] W. Brostow, S. Majumdar, R.P. Singh, Drag reduction and solvation in polymer solutions, Macromol. Rapid Commun. 20(1999) 144-147. [98] J.T. Kim, C.A. Kim, K. Zhang, C.H. Jang, H.J. Choi, Effect of polymer-surfactant interaction on its turbulent drag reduction, Colloids Surf. A Physicochem. Eng. Asp. 391(2011) 125-129. [99] V.N. Manzhai, Y.R. Nasibullina, A.S. Kuchevskaya, A.G. Filimoshkin, Physicochemical concept of drag reduction nature in dilute polymer solutions (the Toms effect), Chem. Eng. Process. Process Intensif. 80(2014) 38-42. [100] T. Min, J.Y. Yoo, H. Choi, D.D. Joseph, Drag reduction by polymer additives in a turbulent channel flow, J. Fluid Mech. 486(2003) 213-238. [101] J.N. Marhefka, P.J. Marascalco, T.M. Chapman, A.J. Russell, M.V. Kameneva, Poly(N-vinylformamide) a drag-reducing polymer for biomedical applications, Biomacromolecules. 7(2006) 1597-1603. [102] P.K. Ptasinski, F.T.M. Nieuwstadt, B.H.A.A. Van Den Brule, M.A. Hulsen, Experiments in turbulent pipe flow with polymer additives at maximum drag reduction, Flow Turbul. Combust. 66(2001) 159-182. [103] E. De Angelis, C.M. Casciola, R. Piva, Turbulent energy routes in viscoelastic wall turbulence, J. Phys. Conf. Ser. 318(2011) 092012. [104] M.P. Escudier, A.K. Nickson, R.J. Poole, Turbulent flow of viscoelastic shearthinning liquids through a rectangular duct:Quantification of turbulence anisotropy, J. Nonnewton. Fluid Mech. 160(2009) 2-10. [105] R.E. Smith, W.G. Tiederman, The mechanism of polymer thread drag reduction, Rheol. Acta 30(1991) 103-113. [106] B.A. Jubran, Y.H. Zurigat, M.F.A. Goosen, Drag reducing agents in multiphase flow pipelines:Recent trends and future needs, Pet. Sci. Technol. 23(2005) 1403-1424. [107] J. Shanshool, H.M.. Al-Qamaje, Effect of molecular weight on turbulent drag reduction with polyisobutylene, NUCEJ Spat. 11(2008) 52-59. [108] A.S. Pereira, F.T. Pinho, Turbulent pipe flow characteristics of low molecular weight polymer solution, J. Nonnewton. Fluid Mech. (1994) 312-344. [109] T. Nakken, M. Tande, B. Nyström, Effects of molar mass, concentration and thermodynamic conditions on polymer-induced flow drag reduction, Eur. Polym. J. 40(2004) 181-186. [110] C.F. Li, R. Sureshkumar, B. Khomami, Influence of rheological parameters on polymer induced turbulent drag reduction, J. Nonnewton. Fluid Mech. 140(2006) 23-40. [111] R. Benzi, A short review on drag reduction by polymers in wall bounded turbulence, Phys. D Nonlinear Phenom. 239(2010) 1338-1345. [112] J.D. Culter, J.L. Zakin, G.K. Patterson, Mechanical degradation of dilute solutions of high polymers in capillary tube flow, J. Appl. Polym. Sci. 19(1975) 3235-3240. [113] A.F. Horn, E.W. Merrill, Midpoint scission of macromolecules in dilute solution in turbulent flow, Nat. Publ. (1984) 312. [114] T. Moussa, C. Tiu, Factors affecting polymer degradation in turbulent pipe flow, Chem. Eng. Sci. 49(1994) 1681-1692. [115] R.Y. Ting, R.C. Little, Characterization of drag reduction and degradation effects in the turbulent pipe flow of dilute polymer solutions, J. Appl. Polym. Sci. 17(1973) 3345-3356. [116] H.J. Choi, C.A. Kim, J.I. Sohn, M.S. Jhon, Exponential decay function for polymer degradation in turbulent drag reduction, Polym. Degrad. Stab. 69(2000) 341-346. [117] J. Shanshool, F.A. M., I.N. Slaiman, The influence of mechanical effects on degradation of polyisobutylene as drag reducing agent, Pet. Coal. 53(2011) 218-222. [118] H.A. Abdulbari, A. Shabirin, H.N. Abdurrahman, Bio-polymers for improving liquid flow in pipelines-A review and future work opportunities, J. Ind. Eng. Chem. 20(2014) 1157-1170. [119] K. Zhang, G. Hyun, H. Jin, Mechanical degradation of water-soluble acrylamide copolymer under a turbulent flow:Effect of molecular weight and temperature, J. Ind. Eng. Chem. 33(2016) 156-161. [120] A.A. Khadom, A.A. Abdul-Hadi, Performance of polyacrylamide as drag reduction polymer of crude petroleum flow, Ain Shams Eng. J. 5(2014) 861-865. [121] M.H. Hassanean, M.E. Awad, H. Marwan, A.A. Bhran, M. Kaoud, Studying the rheological properties and the influence of drag reduction on a waxy crude oil in pipeline flow, Egypt. J. Pet. 25(2016) 39-44. https://doi.org/10.1016/j.ejpe.2015.02.013. [122] N.J. Kim, S. Kim, S.H. Lim, K. Chen, W. Chun, Measurement of drag reduction in polymer added turbulent flow, Int. Commun. Heat Mass Transfer 36(2009) 1014-1019. [123] R.H.J. Sellin, Drag reduction in sewers:First results from a permanent installation, J. Hydraul. Res. 16(1978) 357-371. [124] J.N. Marhefka, M.V. Kameneva, Natural Drag-Reducing Polymers:Discovery, Characterization and Potential Clinical Applications, Fluids 1 (2) (2016) 6. [125] Z. Matras, B. Kopiczak, Intensification of drag reduction effect by simultaneous addition of surfactant and high molecular polymer into the solvent, Chem. Eng. Res. Des. 96(2015) 35-42. [126] K. Gasljevic, K. Hall, D. Chapman, E.F. Matthys, Drag-reducing polysaccharides from marine microalgae:Species productivity and drag reduction effectiveness, J. Appl. Phycol. 20(2008) 299-310. [127] H.J. Choi, S.T. Lim, P.Y. Lai, C.K. Chan, Turbulent drag reduction and degradation of DNA, Phys. Rev. Lett. 89(2002) 088302/1-088302/4. [128] A. Hayder, M. Rosli, Studying the effect addition of okra-natural mucilage as drag reducing agent in different size of pipes in turbulent water flowing system, in:Natl. Conf. Postgrad. Res., 2009, pp. 128-133. [129] S.S. Salehudin, S. Ridha, Coconut residue as biopolymer drag reducer agent in water injection system, Int. J. Appl. Eng. Res. 11(2016) 8037-8040. [130] H. Kaur, A.P.G. Singh, A. Jaafar, U.T. Petronas, The study of drag reduction ability of naturally produced polymers from local plant source, in:Int. Pet. Technol. Conf, 2013. [131] P.R. Kenis, Turbulent Flow Friction Reduction Effectiveness and Hydrodynamic Degradation of Polysaccharides and Synthetic Polymers, Journal of Applied Polymer Science 15(1971) 607-618. [132] R.P. Singh, S. Pal, S. Krishnamoorthy, P. Adhikary, S.A. Ali, High-technology materials based on modified polysaccharides, Pure Appl. Chem. 81(2009) 525-547. [133] C.M. White, M.G. Mungal, Mechanics and prediction of turbulent drag reduction with polymer additives, Annu. Rev. Fluid Mech. 40(2008) 235-256. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 796
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 550
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||