[1] M. Bouanis, M. Tourabi, A. Nyassi, A. Zarrouk, C. Jama, F. Bentiss, Corrosion inhibition performance of 2,5-bis (4-dimethylaminophenyl)-1,3,4-oxadiazole for carbon steel in HCl solution:Gravimetric, electrochemical and XPS studies, Appl. Surf. Sci. 389(2016) 952-966. [2] Y.G. Avdeev, Y.I. Kuznetsov, A.K. Buryak, Inhibition of steel corrosion by unsaturated aldehydes in solutions of mineral acids, Corros. Sci. 69(2013) 50-60. [3] A. Singh, K.R. Ansari, M.A. Quraishi, H. Lgaz, Y. Lin, Synthesis and investigation of pyran derivatives as acidizing corrosion inhibitors for N80 steel in hydrochloric acid:Theoretical and experimental approaches, J. Alloys Compd. 762(2018) 347-362. [4] P. Han, W. Li, H. Tian, X. Gao, R. Ding, C. Xiong, L. Song, X. Zhang, W. Wang, C. Chen, Comparison of inhibition performance of pyridine derivatives containing hydroxyl and sulfhydryl groups:Experimental and theoretical calculations, Mater. Chem. Phys. 214(2018) 345-354. [5] M.A. Quraishi, A. Singh, V.K. Singh, D.K. Yadav, A.K. Singh, Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves, Mater. Chem. Phys. 122(2010) 114-122. [6] I. Ahamad, R. Prasad, M.A. Quraishi, Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions, Corros. Sci. 52(2010) 933-942. [7] A.Y. Musa, R.T.T. Jalgham, A.B. Mohamad, Molecular dynamic and quantum chemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1 M HCl, Corros. Sci. 56(2012) 176-183. [8] G. Ayyannan, K. Karthikeyan, S.S. Vivekananthan, M. Gopiraman, A. Rathinavelu, Chemical and electrochemical investigations of high carbon steel corrosion inhibition in 10% HCl medium by quinoline chalcones, Ionics (Kiel) 19(2013) 919-932. [9] V.V. Dhayabaran, I.S. Lydia, J.P. Merlin, P. Srirenganayaki, Inhibition of corrosion of commercial mild steel in presence of tetrazole derivatives in acid medium, Ionics (Kiel) 10(2004) 123-125. [10] M. Finšgar, J. Jackson, Application of corrosion inhibitors for steels in acidic media for the oil and gas industry:A review, Corros. Sci. 86(2014) 17-41. [11] L.O. Olasunkanmi, I.B. Obot, M.M. Kabanda, E.E. Ebenso, Some quinoxalin-6-yl derivatives as corrosion inhibitors for mild steel in hydrochloric acid:Experimental and theoretical studies, J. Phys. Chem. C 119(2015) 16004-16019. [12] A. Saady, F. El-Hajjaji, M. Taleb, K. Ismaily Alaoui, A. El Biache, A. Mahfoud, G. Alhouari, B. Hammouti, D.S. Chauhan, M.A. Quraishi, Experimental and theoretical tools for corrosion inhibition study of mild steel in aqueous hydrochloric acid solution by new indanones derivatives, Mater. Discov. 12(2018) 30-42. [13] A.S. Abousalem, M.A. Ismail, A.S. Fouda, A complementary experimental and in silico studies on the action of fluorophenyl-2,2'-bichalcophenes as ecofriendly corrosion inhibitors and biocide agents, J. Mol. Liq. 276(2019) 255-274. [14] A.S. Fouda, M.A. Ismail, A.S. Abousalem, G.Y. Elewady, Experimental and theoretical studies on corrosion inhibition of 4-amidinophenyl-2,2'-bifuran and its analogues in acidic media, RSC Adv. 7(2017) 46414-46430. [15] E. Machnikova, K.H. Whitmire, N. Hackerman, Corrosion inhibition of carbon steel in hydrochloric acid by furan derivatives, Electrochim. Acta 53(2008) 6024-6032. [16] K.F. Khaled, Understanding corrosion inhibition of mild steel in acid medium by some furan derivatives:A comprehensive overview, J. Electrochem. Soc. 157(2010) C116-C124. [17] M.M. Youssef, R.K. Arafa, M.A. Ismail, Synthesis, antimicrobial, and antiproliferative activities of substituted phenylfuranylnicotinamidines, Drug Des. Devel. Ther. 10(2016) 1133-1146. [18] R. Padash, M. Rahimi-Nasrabadi, A.S. Rad, A. Sobhani-Nasab, T. Jesionowski, H. Ehrlich, A theoretical study of two novel Schiff bases as inhibitors of carbon steel corrosion in acidic medium, Appl. Phys. A Mater. Sci. Process. 125(2019) 78. [19] J. Aljourani, K. Raeissi, M.A. Golozar, Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1 M HCl solution, Corros. Sci. 51(2009) 1836-1843. [20] M. Farsak, H. Keleş, M. Keleş, A new corrosion inhibitor for protection of low carbon steel in HCl solution, Corros. Sci. 98(2015) 223-232. [21] F. Neese, The ORCA program system, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2(2012) 73-78. [22] F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn:Design and assessment of accuracy, Phys. Chem. Chem. Phys. 7(2005) 3297-3305. [23] A.D. Becke, J. AD Becke, Chem. Phys. 98, 5648(1993), J. Chem. Phys. 98(1993) 5648. [24] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37(1988) 785. [25] H. Sun, P. Ren, J.R. Fried, The COMPASS force field:Parameterization and validation for phosphazenes, Comput. Theor. Polym. Sci. 8(1998) 229-246. [26] A.S. Fouda, Evaluation of 4-amidinophenyl-2,2'-bithiophene and its aza-analogue as novel corrosion inhibitors for CS in acidic media:Experimental and theoretical study, J. Mol. Liq. 240(2017) 372-388. [27] A.S. Fouda, M.A. Ismail, A.M. Temraz, A.S. Abousalem, Comprehensive investigations on the action of cationic terthiophene and bithiophene as corrosion inhibitors:Experimental and theoretical studies, New J. Chem. 43(2019) 768-789. [28] M.S. Abdel-Aal, M.S. Morad, Inhibiting effects of some quinolines and organic phosphonium compounds on corrosion of mild steel in 3 M HCl solution and their adsorption characteristics, Br. Corros. J. 36(2001) 253-260. [29] M. Şahin, G. Gece, F. Karcı, S. Bilgic, Experimental and theoretical study of the effect of some heterocyclic compounds on the corrosion of low carbon steel in 3.5% NaCl medium, J. Appl. Electrochem. 38(2008) 809-815. [30] S.K. Saha, A. Dutta, P. Ghosh, D. Sukul, P. Banerjee, Adsorption and corrosion inhibition effect of Schiff base molecules on the mild steel surface in 1 M HCl medium:A combined experimental and theoretical approach, Phys. Chem. Chem. Phys. 17(2015) 5679-5690. [31] B. Xu, W. Yang, Y. Liu, X. Yin, W. Gong, Y. Chen, Experimental and theoretical evaluation of two pyridinecarboxaldehyde thiosemicarbazone compounds as corrosion inhibitors for mild steel in hydrochloric acid solution, Corros. Sci. 78(2014) 260-268. [32] K.R. Ansari, M.A. Quraishi, A. Singh, Schiff's base of pyridyl substituted triazoles as new and effective corrosion inhibitors for mild steel in hydrochloric acid solution, Corros. Sci. 79(2014) 5-15. [33] M.A. Deyab, Egyptian licorice extract as a green corrosion inhibitor for copper in hydrochloric acid solution, J. Ind. Eng. Chem. 22(2015) 384-389. [34] Y.A. Albrimi, A.A. Addi, J. Douch, R.M. Souto, M. Hamdani, Inhibition of the pitting corrosion of 304 stainless steel in 0.5 M hydrochloric acid solution by heptamolybdate ions, Corros. Sci. 90(2015) 522-528. [35] C.M. Goulart, A. Esteves-Souza, C.A. Martinez-Huitle, C.J.F. Rodrigues, M.A.M. Maciel, A. Echevarria, Experimental and theoretical evaluation of semicarbazones and thiosemicarbazones as organic corrosion inhibitors, Corros. Sci. 67(2013) 281-291. [36] M.A. Amin, M.M. Ibrahim, Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative, Corros. Sci. 53(2011) 873-885. [37] M.V. Fiori-Bimbi, P.E. Alvarez, H. Vaca, C.A. Gervasi, Corrosion inhibition of mild steel in HCL solution by pectin, Corros. Sci. 92(2015) 192-199. [38] C. Verma, E.E. Ebenso, I. Bahadur, I.B. Obot, M.A. Quraishi, 5-(Phenylthio)-3H-pyrrole-4-carbonitriles as effective corrosion inhibitors for mild steel in 1 M HCl:Experimental and theoretical investigation, J. Mol. Liq. 212(2015) 209-218. [39] T.K. Chaitra, K.N.S. Mohana, H.C. Tandon, Thermodynamic, electrochemical and quantum chemical evaluation of some triazole Schiff bases as mild steel corrosion inhibitors in acid media, J. Mol. Liq. 211(2015) 1026-1038. [40] A.S. Fouda, A.S. Abousalem, G.Y. EL-Ewady, Mitigation of corrosion of carbon steel in acidic solutions using an aqueous extract of Tilia cordata as green corrosion inhibitor, Int. J. Ind. Chem. 8(2017) 61-73. [41] A.S. Fouda, K. Shalabi, G.Y. Elewady, H.F. Merayyed, Chalcone derivatives as corrosion inhibitors for carbon steel in 1 M HCl solutions, Int. J. Electrochem. Sci. 9(2014) 7038-7058. [42] M. Yadav, D. Behera, U. Sharma, Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid, Arab. J. Chem. 9(2016) S1487-S1495. [43] R.W. Bosch, J. Hubrecht, W.F. Bogaerts, B.C. Syrett, Electrochemical frequency modulation:A new electrochemical technique for online corrosion monitoring, Corrosion. 57(2001) 60-70. [44] D.-Q. Zhang, Q.-R. Cai, X.-M. He, L.-X. Gao, G.S. Kim, Corrosion inhibition and adsorption behavior of methionine on copper in HCl and synergistic effect of zinc ions, Mater. Chem. Phys. 114(2009) 612-617. [45] A. Yousefi, S. Javadian, N. Dalir, J. Kakemam, J. Akbari, Imidazolium-based ionic liquids as modulators of corrosion inhibition of SDS on mild steel in hydrochloric acid solutions:Experimental and theoretical studies, RSC Adv. 5(2015) 11697-11713. [46] M.A. Quraishi, R. Sardar, Hector bases-A new class of heterocyclic corrosion inhibitors for mild steel in acid solutions, J. Appl. Electrochem. 33(2003) 1163-1168. [47] W. Li, Q. He, S. Zhang, C. Pei, B. Hou, Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium, J. Appl. Electrochem. 38(2008) 289-295. [48] A.O. Yüce, G. Kardaş, Adsorption and inhibition effect of 2-thiohydantoin on mild steel corrosion in 0.1 M HCl, Corros. Sci. 58(2012) 86-94. [49] Z. Salarvand, M. Amirnasr, M. Talebian, K. Raeissi, S. Meghdadi, Enhanced corrosion resistance of mild steel in 1 M HCl solution by trace amount of 2-phenylbenzothiazole derivatives:Experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies, Corros. Sci. 114(2017) 133-145. [50] S.S. Abdel-Rehim, K.F. Khaled, N.S. Abd-Elshafi, Electrochemical frequency modulation as a new technique for monitoring corrosion inhibition of iron in acid media by new thiourea derivative, Electrochim. Acta 51(2006) 3269-3277. [51] L. Han, S. Song, A measurement system based on electrochemical frequency modulation technique for monitoring the early corrosion of mild steel in seawater, Corros. Sci. 50(2008) 1551-1557. [52] M.A. Amin, S.S.A. EI-Rehim, E.E.F. El-Sherbini, O.A. Hazzazi, M.N. Abbas, Polyacrylic acid as a corrosion inhibitor for aluminium in weakly alkaline solutions. Part I:Weight loss, polarization, impedance EFM and EDX studies, Corros. Sci. 51(2009) 658-667. [53] A.S. Fouda, M.A. Diab, A.Z. El-Sonbati, S.A. Hassan, Evaluation of some organic compounds containing O, N and S atoms as corrosion inhibitors for stainless steel 304 in acid solutions, Int. J. Electrochem. Sci. 12(2017) 5072-5091. [54] G. Meyer, N.M. Amer, Novel optical approach to atomic force microscopy, Appl. Phys. Lett. 53(1988) 1045-1047. [55] B. Tan, S. Zhang, Y. Qiang, L. Guo, L. Feng, C. Liao, Y. Xu, S. Chen, A combined experimental and theoretical study of the inhibition effect of three disulfide-based flavouring agents for copper corrosion in 0.5 M sulfuric acid, J. Colloid Interface Sci. 526(2018) 268-280. [56] Y. Sasikumar, A.S. Adekunle, L.O. Olasunkanmi, I. Bahadur, R. Baskar, M.M. Kabanda, I.B. Obot, E.E. Ebenso, Experimental, quantum chemical and Monte Carlo simulation studies on the corrosion inhibition of some alkyl imidazolium ionic liquids containing tetrafluoroborate anion on mild steel in acidic medium, J. Mol. Liq. 211(2015) 105-118. [57] E.E. Ebenso, T. Arslan, F. Kandemirli, N. Caner, I. Love, Quantum chemical studies of some rhodanine azosulpha drugs as corrosion inhibitors for mild steel in acidic medium, Int. J. Quantum Chem. 110(2010) 1003-1018. [58] S. Malinowski, J. Jaroszyńska-Wolińska, T. Herbert, Theoretical predictions of anticorrosive properties of THAM and its derivatives, J. Mol. Model. 24(1) (2018). [59] M.A. Migahed, A.M. Al-Sabagh, E.A. Khamis, E.G. Zaki, Quantum chemical calculations, synthesis and corrosion inhibition efficiency of ethoxylated-[2-(2-{2-[2-(2-benzenesulfonylamino-ethylamino)-ethylamino]-ethylamino}-ethylamino)-ethyl]-4-alkyl-benzenesulfonamide on API X65 steel surface under H2S environment, J. Mol. Liq. 212(2015) 360-371. [60] M. Yadav, S. Kumar, L. Gope, Experimental and theoretical study on amino acid derivatives as eco-friendly corrosion inhibitor on mild steel in hydrochloric acid solution, J. Adhes. Sci. Technol. 28(2014) 1072-1089. [61] S.K. Saha, A. Hens, A. RoyChowdhury, A.K. Lohar, N.C. Murmu, P. Banerjee, Molecular dynamics and density functional theory study on corrosion inhibitory action of three substituted pyrazine derivatives on steel surface, Trans. 2(2014) 489-503. [62] M.S. Masoud, M.K. Awad, M.A. Shaker, M.M.T. El-Tahawy, The role of structural chemistry in the inhibitive performance of some aminopyrimidines on the corrosion of steel, Corros. Sci. 52(2010) 2387-2396. [63] G. Gece, S. Bilgiç, Quantum chemical study of some cyclic nitrogen compounds as corrosion inhibitors of steel in NaCl media, Corros. Sci. 51(2009) 1876-1878. [64] S. Kaya, B. Tüzün, C. Kaya, I.B. Obot, Determination of corrosion inhibition effects of amino acids:Quantum chemical and molecular dynamic simulation study, J. Taiwan Inst. Chem. Eng. 58(2016) 528-535. [65] M. ElBelghiti, Y. Karzazi, A. Dafali, B. Hammouti, F. Bentiss, I.B. Obot, I. Bahadur, E.E. Ebenso, Experimental, quantum chemical and Monte Carlo simulation studies of 3,5-disubstituted-4-amino-1,2,4-triazoles as corrosion inhibitors on mild steel in acidic medium, J. Mol. Liq. 218(2016) 281-293. [66] W. Wang, Z. Li, Q. Sun, A. Du, Y. Li, J. Wang, S. Bi, P. Li, Insights into the nature of the coupling interactions between uracil corrosion inhibitors and copper:A DFT and molecular dynamics study, Corros. Sci. 61(2012) 101-110. [67] Q. Ma, S. Qi, X. He, Y. Tang, G. Lu, 1,2,3-Triazole derivatives as corrosion inhibitors for mild steel in acidic medium:Experimental and computational chemistry studies, Corros. Sci. 129(2017) 91-101. |