[1] X. Zhao, C. Xu, Q. Shi, Porphyrins in heavy petroleums:A review, Struct. Bond. 168(2016) 39-70. [2] Z. Bao, Y. Chen, L. Yu, New metalloporphyrin containing polymers from the heck coupling reaction, Macromolecules 27(16) (1994) 4629-4631. [3] F. Montanari, L. Casella, Metalloporphyrins catalyzed oxidations, Springer Science & Business Media, Vol. 17(2013). [4] B.C. Wu, J.H. Zhu, X.H. Li, Distribution of calcium, nickel, iron, and manganese in super-heavy oil from Liaohe Oilfied, China, Petrol. Sci. 11(2014) 590-595. [5] M.R. Gafurov, I.N. Gracheva, G.V. Mamin, Y.M. Ganeeva, T.N. Yusupova, S.B. Orlinskii, Study of organic self-assembled nanosystems by means of high-frequency ESR/ENDOR:The case of oil asphaltenes, Russ. J. Gen. Chem. 88(11) (2018) 2374-2380. [6] K.B. Tayeb, O. Delpoux, J. Barbier, J. Marques, J. Verstraete, H. Vezin, Applications of pulsed electron paramagnetic resonance spectroscopy to the identification of vanadyl complexes in asphaltene molecules. Part 1:Influence of the origin of the feed, Energy Fuels 29(2015) 4608-4615. [7] D. Giraldo-Dávila, M.L. Chacón-Patiño, J.S. Ramirez-Pradilla, C. Blanco-Tirado, M.Y. Combariza, Selective ionization by electron-transfer MALDI-MS of vanadyl porphyrins from crude oils, Fuel. 226(2018) 103-111. [8] A. Treibs, Chlorophyll and hemin derivatives in organic mineral substances, Angew. Chem. Int. Edit. 49(38) (1936) 682-686. [9] M.R. Yakubov, D.V. Milordov, S.G. Yakubova, G.R. Abilova, K.O. Sinyashin, E.G. Tazeeva, U.U. Borisova, N.A. Mironov, V.I. Morozov, Vanadium and paramagnetic vanadyl complexes content in sphaltenes of heavy oils of various productive sediments, Petrol. Sci. Technol. 35(14) (2017) 1468-1472. [10] J.C. Putman, S.M. Rowland, Y.E. Corilo, A.M. Mckenna, Chromatographic enrichment and subsequent separation of nickel and vanadyl porphyrins from natural seeps and molecular characterization by positive electrospray ionization FT-ICR Mass Spectrometry, Anal. Chem. 86(2014) 10708-10715. [11] S.M. El-Sabagh, Occurrence and distribution of vanadyl porphyrins in Saudi Arabian crude oils, Fuel Process. Technol. 57(1) (1998) 65-78. [12] T.N. Lomova, M.E. Klyueva, E.G. Mozhzhukhina, E.Yu. Tyulyaeva, N.G. Bichan, S.V. Zaitseva, S.A. Zdanovich, Ion-molecular interactions in the metalloporphyrin-acid system in liquid solutions, J. Struct. Chem. 55(1) (2014) 180-190. [13] T.A. Maryutina, N.S. Musina, Determination of metals in heavy oil residues by inductively coupled plasma atomic emission spectroscopy, J. Anal. Chem. 67(10) (2012) 862-867. [14] E.W. Baker, Mass spectrometric characterization of petroporphyrins1, J. Amer. Chem. Soc. 88(10) (1966) 2311-2315. [15] E.W. Baker, T.F. Yen, J.P. Dickie, R.E. Rhodes, L.F. Clark, Mass spectrometry of porphyrins. II. Characterization of petroporphyrins, J. Amer. Chem. Soc. 89(14) (1967) 3631-3639. [16] V. Ramachandran, J.V. Tol, A.M. Mckenna, R.P. Rodgers, A.G. Marshall, N.S. Dalal, High field electron paramagnetic resonance characterization of electronic and structural environments for paramagnetic metal ions and organic free radicals in deepwater horizon oil spill tar balls, Anal. Chem. 87(2015) 2306-2313. [17] J. Barbee, A.E. Kuznetsov, Revealing substituent effects on the electronic structure and planarity of Ni-porphyrins, Comput. Theor. Chem. 981(2012) 73-85. [18] T. Biktagirov, M. Gafurov, G. Mamin, I. Gracheva, A. Galukhin, S. Orlinskii, In situ identification of various structural features of vanadyl porphyrins in crude oil by high-Field (3.4 T) electron-nuclear double resonance spectroscopy combined with density functional theory calculations, Energy Fuels 31(2017) 1243-1249. [19] H. Fu, M. Cao, Y. She, Z. Sun, Y. Yu, Electronic effects of the substituent on the dioxygen-activating abilities of substituted iron tetraphenylporphyrins:A theoretical study, J. Mol. Model. 21(4) (2015) 1-10. [20] D.B. Berezin, Electronic and steric effects of substituents in solution and solvation of forcedly distorted porphyrins, Russ. J. Gen. Chem. 74(3) (2004) 460-464. [21] Z. Huo, I. Azcarate, R. Farha, M. Golgmann, H. Xu, B. Hasenknopf, Copolymeric films obtained by electropolymerization of porphyrins and dipyridyl-spacers including Dawson-type polyoxometalates, J. Solid State Electr. 19(9) (2015) 2611-2621. [22] S.V. Zaitseva, S.A. Zdanovich, O.I. Koifman, Kinetics of complex formation of 5,10,15,20-tetraphenylporphyrin and 2,3,7,8,12,13,17,18-octaethylporphyrin with iron valinate, guaninate, and adeninate, Russ. J. Gen. Chem. 86(12) (2016) 2653-2659. [23] Y.B. Ivanova, N.V. Chizhova, S.G. Pukhovskaya, N.Z. Mamardashvili, Influence of substituents structure and their electronic effects on acid-base and complexing properties of 5,10,15,20-tetranitro-2,3,7,8,12,13,17,18-octaethylporphyrin, Russ. J. Gen. Chem. 84(5) (2014) 939-945. [24] E. Meyer, The crystal and molecular structure of nickel (II) octaethylporphyrin, Acta Crystallogr. B. 28(7) (1972) 2162-2167. [25] F.S. Molinaro, J.A. Ibers, Crystal and molecular structure of 2, 3, 7, 8, 12, 13, 17, 18-octaethylporphinatooxovanadium (IV), Inorganic Chem. 15(9) (1976) 2278-2283. [26] W.R. Scheidt, I. Turowska-Tyrk, Crystal and molecular structure of (octaethylporphinato) cobalt (II). Comparison of the structures of four-coordinate M (TPP) and M (OEP) derivatives (M=Fe-Cu). Use of area detector data, Inorganic Chem. 33(7) (1994) 1314-1318. [27] R. Pak, W. Scheidt, Structure of (2, 3, 7, 8, 12, 13, 17, 18-octaethylporphinato) copper (II), Acta Crystallogr. C. 47(2) (1991) 431-433. [28] J. Vernemismer, R. Ocampo, C. Bauder, H.J. Callot, P. Albrecht, Structural comparison of nickel, vanadyl, copper, and free base porphyrins from Oulad Abdoun oil shale (Maastrichtian, Morocco), Energy Fuel 4(6) (1990) 639-643. [29] W. Jentzen, E. Unger, G. Karvounis, JAS. Conformational properties of nickel (II) octaethylporphyrin in solution. 1. Resonance excitation profiles and temperature dependence of structure-sensitive Raman lines, J. Phys. Chem. 100(33) (1996) 14184-14191. [30] A. Cupane, M. Leone, L. Cordone, H. Gilch, W. Dreybrodt, E. Unger, R. SchweitzerStenner, Conformational properties of nickel (II) octaethylporphyrin in solution. 2. A low-temperature optical absorption spectroscopy study, J. Phys. Chem. 100(33) (1996) 14192-14197. [31] D. Man, R. Słota, M.A. Broda, G. Mele, J. Li, Metalloporphyrin intercalation in liposome membranes:ESR study, J. Biol. Inorg. Chem. 16(1) (2011) 173-181. [32] L. Wei, Y. She, Y. Yao, S. Zhang, Substituent effects on geometric and electronic properties of iron tetraphenylporphyrin:a DFT investigation, J. Mol. Model. 18(6) (2012) 2483-2491. [33] L.K. Stoll, M.Z. Zgierski, P.M. Kozlowski, Density functional theory analysis of nickel octaethylporphyrin ruffling, J. Phys. Chem. A 106(1) (2002) 170-175. [34] E.D. Glendening, C.R. Landis, F. Weinhold, Natural bond orbital methods, Wires. Comput. Mol. Sci. 2(1) (2012) 1-42. [35] R. Barata-Morgado, M.L. Sánchez, I.F. Galván, J.C. Corchado, M.E. Martin, A. MunozLosa, M.A. Aguilar, Theoretical study of the conformational equilibrium of 1,4-dioxane in gas phase, neat liquid, and dilute aqueous solutions, Theor. Chem. Accounts 132(10) (2013) 1-11. [36] Y. X. Zhang, Y. F. Zhu, D. D. Qi, L. J. Zhang, L. Wan, Structures and properties of novel 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl] porphyrin derivatives:Density functional theory calculations, Sci. China Chem. 53(10) (2010) 2183-2192. [37] L. Wan, D. Qi, Y. Zhang, The effect of β-saturated pyrrolic rings on the electronic structures and aromaticity of magnesium porphyrin derivatives:A density functional study, J. Mol. Graph. Model. 30(2011) 15-23. [38] E. D. Glendening, F. Weinhold, Natural resonance theory:II. Natural bond order and valency, J. Comput. Chem. 19(6) (1998) 610-627. [39] W.A. Oertling, A. Salehi, Y.C. Chung, G.E. Leroi, C.K. Chang, Vibrational, electronic, and structural properties of cobalt, copper, and zinc octaethylporphyrin. pi. cation radicals, J. Phys. Chem. 91(23) (1987) 5887-5898. [40] A.E. Reed, L.A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev. 88(6) (1988) 899-926. [41] K. Fukui, T. Yonezawa, H. Shingu, A molecular orbital theory of reactivity in aromatic hydrocarbons, J. Chem. Phys. 20(4) (1952) 722-725. [42] A. Ghosh, I. Halvorsen, H.J. Nilsen, Electrochemistry of nickel and copper β-octahalogeno-meso-tetraarylporphyrins. Evidence for important role played by saddling-induced metal (dx2-y2)-porphyrin ("a2u") orbital interactions, J. Phys. Chem. B 105(34) (2001) 8120-8124. [43] M. Gouterman, G.H. Wagnière, L.C. Snyder, Spectra of porphyrins:Part II. Four orbital model, J. Mol. Spectrosc. 11(1) (1963) 108-127. [44] B.N. Figgis, Introduction To Ligand, Interscience Publishers, New York, 1966. [45] R. Bechaieb, Z.B. Lakhdar, H. Gérard, DFT and TD-DFT studies of Mg-substitution in chlorophyll by Cr(II), Fe(II) and Ni(II), Chem. Africa 1(1-2) (2018) 79-86. [46] C.K. Tai, W.H. Chuang, B.C. Wang, Substituted group and side chain effects for the porphyrin and zinc (II)-porphyrin derivatives:A DFT and TD-DFT study, J. Lumin. 142(2013) 8-16. [47] S.R. Stoyanov, C.X. Yin, M.R. Gray, J.M. Stryker, S. Gusarov, Density functional theory investigation of the effect of axial coordination and annelation on the absorption spectroscopy of nickel (II) and vanadyl porphyrins relevant to bitumen and crude oils, Can. J. Chem. 91(9) (2013) 872-878. [48] E. Baerends, G. Ricciardi, A. Rosa, S. Van Gisbergen, A DFT/TDDFT interpretation of the ground and excited states of porphyrin and porphyrazine complexes, Coordin. Chem. Rev. 230(1) (2002) 5-27. [49] S. Patchkovskii, P.M. Kozlowski, M.Z. Zgierski, Theoretical analysis of singlet and triplet excited states of nickel porphyrins, J. Chem. Phys. 121(3) (2004) 1317-1324. |