[1] Z.C. Kadirova, M. Hojamberdiev, L.L. Bo, et al., Ion uptake properties of low-cost inorganic sorption materials in the CaO-Al2O3-SiO2 system prepared from phosphogypsum and kaolin, J. Clean. Prod. 83(2014) 483-490. [2] A.M. Rashad, Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles, J. Clean. Prod. 87(2015) 717-725. [3] S.V. Dorozhkin, Fundamentals of the wet-process phosphoric acid production.2. Kinetics and mechanism of CaSO4 center dot 0.5H2O surface crystallization and coating formation, Ind. Eng. Chem. Res. 36(1997) 467-473. [4] Y. Shen, J.S. Qian, J.Q. Chai, et al., Calcium Sulphoaluminate Cements Made with Phosphogypsum:Production Issues and Material Properties, Cement & Concrete Composites, 48(2014) 67-74. [5] B. J. Yang, M. M. Yang, B. N. Wang, et al., A new route to synthesize calcium carbonate microspheres from phosphogypsum, Mater Res Express, 6(2019) 045042. [6] Z. W. Cao, B. Liu, X. B. Li, et al.,, Experimental study on backfilling mine goafs with chemical waste phosphogypsum, Geofluids, (2019), https://doi.org/10.1155/2019/9218916. [7] S.Q. Lu, P.Q. Lan, S.F. Wu, Preparation of nano-CaCO3 from phosphogypsum by gasliquid-solid reaction for CO2 sorption, Ind. Eng. Chem. Res. 55(2016) 10172-10177. [8] X.D. Yan, L.P. Ma, B. Zhu, et al., Reaction mechanism process analysis with phosphogypsum decomposition in multiatmosphere control, Ind. Eng. Chem. Res. 53(2014) 19453-19459. [9] S. Ramkumar, L.S. Fan, Thermodynamic and experimental analyses of the threestage calcium looping process, Ind. Eng. Chem. Res. 49(2010) 7563-7573. [10] M. Al-Hwaiti, O. Al-Khashman, Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials, Environ Geochem Hlth 37(2015) 287-304. [11] H. Tayibi, M. Choura, F.A. Lopez, et al., Environmental impact and management of phosphogypsum, J. Environ. Manag. 90(2009) 2377-2386. [12] C.R. Canovas, F. Macias, R. Perez-Lopez, et al., Valorization of wastes from the fertilizer industry:Current status and future trends, J. Clean. Prod. 174(2018) 678-690. [13] J. Yang, B. Zhu, L.P. Ma, et al., Investigation of Al2O3 and Fe2O3 transmission and transformation during the decomposition of phosphogypsum, Chinese J Chem Eng 27(2019) 1125-1131. [14] L. Reijnders, Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials:A review, Build. Environ. 42(2007) 1036-1042. [15] M. Walawalkar, C.K. Nichol, G. Azirni, An innovative process for the recovery of consumed acid in rare earth elements leaching from phosphogypsum, Ind. Eng. Chem. Res. 55(2016) 12309-12316. [16] Q.X. Dai, L.P. Ma, B. Yan, et al., Purification of calcium oxide in phosphogypsum decomposition residue based on the sucrose-CO2 method, Sep. Sci. Technol. 50(2015) 479-486. [17] C.R. Canovas, S. Chapron, G. Arrachart, et al., Leaching of rare earth elements (REEs) and impurities from phosphogypsum:A preliminary insight for further recovery of critical raw materials, J. Clean. Prod. 219(2019) 225-235. [18] X.S. Yang, Z.Y. Zhang, X.L. Wang, et al., Thermodynamic study of phosphogypsum decomposition by sulfur, J. Chem. Thermodyn. 57(2013) 39-45. [19] B.H. Zhong, X.L. Wang, Z.Y. Zhang, et al., New saving energy and reducing discharge process of producing sulfuric acid by phosphogypsum reduction and decomposition with sulfur, Chemical Fertilizer Industry 2(2014) 13-16,33(in Chinese). [20] L.P. Ma, Y.L. Du, X.K. Niu, et al., Thermal and kinetic analysis of the process of thermochemical decomposition of phosphogypsum with CO and additives, Ind. Eng. Chem. Res. 51(2012) 6680-6685. [21] S. Ting, W. Xingang, W. Jianfeng, et al., in:Chemical Industry and Engineering Progress (Ed.), Preparation of Light Calcium Carbonate from Phosphorus Gypsum Desulfurization Slag, vol. 34, 2015, pp. 178-182. [22] A. Said, O. Mattila, S. Eloneva, et al., Enhancement of calcium dissolution from steel slag by ultrasound, Chem. Eng. Process. 89(2015) 1-8. [23] C.W. Bale, E. Belisle, P. Chartrand, et al., Recent Developments in Factsage Thermochemical Software and Databases, Celebrating the Megascale:Proceedings of the Extraction and Processing Division Symposium on Pyrometallurgy in Honor of David G.C. Robertson, (2014) 141-148. [24] C.W. Bale, E. Belisle, P. Chartrand, et al., FactSage thermochemical software and databases-Recent developments, Calphad 33(2009) 295-311. [25] Y.Q. Fan, Y.X. Yang, Y.P. Xiao, et al., Recovery of tellurium from high telluriumbearing materials by alkaline pressure leaching process:Thermodynamic evaluation and experimental study, Hydrometallurgy 139(2013) 95-99. [26] B. Yan, L.P. Ma, J. Ma, et al., Mechanism analysis of Ca, S transformation in Phosphogypsum decomposition with Fe catalyst, Ind. Eng. Chem. Res. 53(2014) 7648-7654. [27] B. Yan, L.P. Ma, L.G. Xie, et al., Reaction mechanism for Iron catalyst in the process of phosphogypsum decomposition, Ind. Eng. Chem. Res. 52(2013) 17383-17389. [28] B. Zhu, L.P. Ma, D.L. Zheng, et al., Study on the Transmission and Transformation of the Impurities in the Reductive Decomposition Process of Phosphogypsum, Proceedings of the 20166th International Conference on Machinery, Materials, Environment, Biotechnology and Computer (Mmebc), vol 88, 2016767-773. [29] B.R. Reddy, S.K. Mishra, G.N. Banerjee, Kinetics of leaching of a gibbsitic bauxite with hydrochloric acid, Hydrometallurgy 51(1999) 131-138. [30] E.A. Abdel-Aal, M.M. Rashad, Kinetic study on the leaching of spent nickel oxide catalyst with sulfuric acid, Hydrometallurgy 74(2004) 189-194. [31] L. Cui, Y.X. Guo, X.M. Wang, et al., Dissolution kinetics of aluminum and iron from coal mining waste by hydrochloric acid, Chinese J Chem Eng 23(2015) 590-596. [32] R.J. Ferrier, L.P. Cai, Q.Y. Lin, et al., Models for apparent reaction kinetics in heap leaching:A new semi-empirical approach and its comparison to shrinking core and other particle-scale models, Hydrometallurgy 166(2016) 22-33. [33] S. Ghassa, M. Noaparast, S.Z. Shafaei, et al., A study on the zinc sulfide dissolution kinetics with biological and chemical ferric reagents, Hydrometallurgy 171(2017) 362-373. [34] J.Y. Wang, X.W. Huang, L.S. Wang, et al., Kinetics study on the leaching of rare earth and aluminum from FCC catalyst waste slag using hydrochloric acid, Hydrometallurgy 171(2017) 312-319. [35] X. Bian, S.H. Yin, Y. Luo, et al., Leaching kinetics of bastnaesite concentrate in HCl solution, T Nonferr Metal Soc 21(2011) 2306-2310. [36] Q. Lin, D.J. Barker, K.J. Dobson, et al., Modelling particle scale leach kinetics based on X-ray computed micro-tomography images, Hydrometallurgy 162(2016) 25-36. [37] N.S. Randhawa, K. Gharami, M. Kumar, Leaching kinetics of spent nickel-cadmium battery in sulphuric acid, Hydrometallurgy 165(2016) 191-198. [38] A. Abad, F. Garcia-Labiano, P. Gayan, et al., Redox kinetics of CaMg0.1Ti0.125Mn0.775O2.9-delta for chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU), Chem. Eng. J. 269(2015) 67-81. [39] J. Szekely, J.W. Evans, A structural model for gas-solid reactions with a moving boundary, Chem. Eng. Sci. 25(1970) 1091-1107. [40] X.F. Jin, X. Zhao, K. Huang, A high-fidelity multiphysics model for the new solid oxide iron-air redox battery part I:Bridging mass transport and charge transfer with redox cycle kinetics, J. Power Sources 280(2015) 195-204. [41] Z.N. Lou, Y. Xiong, X.D. Feng, et al., Study on the roasting and leaching behavior of high-sulfur bauxite using ammonium bisulfate, Hydrometallurgy 165(2016) 306-311. [42] H.H. Wang, G.Q. Li, D. Zhao, et al., Dephosphorization of high phosphorus oolitic hematite by acid leaching and the leaching kinetics, Hydrometallurgy 171(2017) 61-68. [43] W. Luo, Q.M. Feng, L.M. Ou, et al., Kinetics of saprolitic laterite leaching by sulphuric acid at atmospheric pressure, Miner. Eng. 23(2010) 458-462. [44] J.X. Huang, M.J. Chen, H.Y. Chen, et al., Leaching behavior of copper from waste printed circuit boards with Bronsted acidic ionic liquid, Waste Manag. 34(2014) 483-488. [45] S. Hariharan, M. Repmann-Werner, M. Mazzotti, Dissolution of dehydroxylated lizardite at flue gas conditions:III. Near-equilibrium kinetics, Chem. Eng. J. 298(2016) 44-54. [46] T. Jalali, M. Ebrahimi, Kinetics and thermodynamics of synthesis of hybrid oligomerAcrylated cycloaliphatic epoxy in the presence of Triphenylphosphine and Triethylamine catalysts, Int. J. Chem. Kinet. 49(2017) 3-9. [47] W.Z. Sun, J.Q. Shao, Z.H. Xi, et al., Thermodynamics and kinetics of transesterification reactions to produce diphenyl carbonate from dimethyl carbonate catalyzed by tetrabutyl titanate and dibutyltin oxide, Can. J. Chem. Eng. 95(2017) 353-358. [48] M.Z. Wu, H.H. Lu, M.C. Liu, et al., Direct extraction of perovskite CaTiO3 via efficient dissociation of silicates from synthetic Ti-bearing blast furnace slag, Hydrometallurgy 167(2017) 8-15. |