[1] C.J. Vörösmarty, P. Green, J. Salisbury, R.B. Lammers, Global water resources:Vulnerability from climate change and population growth, Science 289(2000) 284-288. [2] A.O. Babatunde, Y.Q. Zhao, Constructive approaches towards water treatment works sludge management:Review of beneficial reuses, Crit. Rev. Env. Sci. Tec. 37(2007) 129-164. [3] T. Ahmad, K. Ahmad, M. Alam, Sustainable management of water treatment sludge through 3 ‘R’ concept, J. Clean. Prod. 124(2016) 1-13. [4] E. Kawczyinski, V. Achtermann, A water industry database report on residuals handling. p. 6b-1 to 6b-5. In Proc. of the AWWA/WEF Joint Residuals Conf. Durham, NC (1991) 11-14. [5] H.N. Sampson, Optimization of Residuals Management at a Drinking Water Treatment Facility, Ph D Thesis, Dalhouse University, Halifax, 2016. [6] D.A. Cornwell, J. Zoltek Jr., Recycling of alum used for phosphorus removal in domestic wastewater treatment, J. Water Pollut. Control Fed. (1977) 600-612. [7] D.A. Georgantas, H.P. Grigoropoulou, Phosphorus removal from synthetic and municipal wastewater using spent alum sludge, Wat. Sci. Tech. 52(2005) 525-532. [8] N. Maqbool, Z. Khan, A. Asghar, Reuse of alum sludge for phosphorus removal from municipal wastewater, Desalin. Water Treat. 57(2016) 13246-13254. [9] B.S. Chittoo, C. Sutherland, Adsorption of phosphorus using water treatment sludge, J. Appl. Sci. 14(2014) 3455-3463. [10] M.K. Gibbons, G.A. Gagnon, Understanding removal of phosphate or arsenate onto water treatment residual solids, J. Hazard. Mater. 186(2011) 1916-1923. [11] R.A. Adhikari, K.C. Bal Krishna, R. Sarukkalige, Evaluation of phosphorus adsorption capacity of various filter materials from aqueous solution, Adsorp. Sci. Technol. 34(2016) 320-330. [12] B.S. Chittoo, C. Sutherland, Adsorption using lime-ironsludge-encapsulated calcium alginate beads for phosphate recovery with ANN-andRSM-optimized encapsulation, J. Environ. Eng 145(2019), 04019019. [13] E.N. El Qada, E.A. Abdelghany, Y.H. Magdy, Utilization of activated carbon for the removal of basic dyes in fixed-bed microcolumn, Int. J. Energ. Environ. 4(2013) 815-824. [14] E. Oguz, Fixed-bed column studies on the removal of Fe3+ and neural network modeling, Arab. J. Chem. 10(2017) 313-320. [15] E. Valdman, L. Erijman, F.L.P. Pessoa, S.G.F. Leite, Continuous biosorption of Cu and Zn by immobilized waste biomass Sargassum sp, Process Biochem. 36(2001) 869-873. [16] Z. Zulfadhly, M.D. Mashitah, S. Bhatia, Heavy metals removal in fixed-bed column by the macro fungus Pycnoporus sanguineus, Environ. Pollut. 112(2001) 463-470. [17] T. Robinson, B. Chandran, G.S. Naidu, P. Nigam, Studies on the removal of dyes from a synthetic textile effluent using barley husk in static-batch mode and in a continuous flow, packed-bed, reactor, Bioresour. Technol. 85(2002) 43-49. [18] F. Rozada, L.F. Calvo, A.I. Garcıa, J. Martın-Villacorta, M. Otero, Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems, Bioresour. Technol. 87(2003) 221-230. [19] B. Cheknane, M. Badu, J.P. Basly, O. Bouras, F. Zermane, Modeling of basic green 4 dynamic sorption onto granularorgano-inorgano pillared clays (GOICs) in column reactor, Chem. Eng. J. 209(2012) 7-12. [20] W.J. Weber, Physicochemical Processes for Water Quality Control, WileyInterscience, New York, 1972. [21] Y.H. Yoon, J.H. NELSON, Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life, Am. Ind. Hyg. Assoc. J 45(1984) 509-516. [22] G. Yan, T. Viraraghavan, M. Chen, A new model for heavy metal removal in a biosorption column, Adsorpt. Sci. Technol. 19(2001) 25-43. [23] A. Wolborska, Adsorption on activated carbon of p-nitrophenol from aqueous solution, Water Res. 23(1989) 85-91. [24] H.C. Thomas, Heterogeneous ion exchange in a flowing system, Am. Chem. Soc. 66(1944) 1664-1666. [25] G.S. Bohart, E.Q. Adams, Some aspects of behavior of charcoal with respect to chlorine, J. Am. Chem. Soc. 42(1920) 523-529. [26] R.A. Hutchin, New simplified design of activated carbon systems, Am. J. Chem. Eng. 80(1973) 133-138. [27] T.A.H. Nguyen, H.H. Ngo, W.S. Guo, T.Q. Pham, F.M. Li, T.V. Nguyen, X.T. Bui, Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO):Fixed-bed column study, Sci. Total Environ. 523(2015) 40-49. [28] D. Bulgariu, L. Bulgariu, Sorption of Pb (II) onto a mixture of algae waste biomass and anion exchanger resin in a packed-bed column, Bioresour. Technol. 129(2013) 374-380. [29] R. Han, Y. Wang, X. Zhao, Y. Wang, F. Xie, J. Cheng, M. Tang, Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column:experiments and prediction of breakthrough curves, Desalin. 245(2009) 284-297. [30] S. Chen, Q. Yue, B. Gao, Q. Li, X. Xu, F. Fu, Adsorption of hexavalent chromium from aqueous solution by modified corn stalk:Afixed-bed column study, Bioresour. Technol. 113(2012) 114-120. [31] J.T. Nwabanne, P.K. Igbokwe, Adsorption performance of packed bed column for the removal of lead (II) using oil palm fibre, Int. J. Appl. Sci. Technol 2(2012) 106-115. [32] Z.Z. Chowdhury, S.B.A. Hamid, S.M. Zain, Evaluating design parameters for breakthrough curve analysis and kinetics of fixed bed columns for Cu (II) cations using lignocellulosic wastes, BioResources 10(2014) 732-749. [33] S. Rouf, M. Nagapadma, Modeling of fixed-bed column studies for adsorption of azo dye on chitosan impregnated with a cationic surfactant, Int. J. Sci. Eng. Res. 6(2015) 124-132. [34] F. Salem, M.A. Awadallah, Parameters estimation of photovoltaic modules:comparison of ANN and ANFIS, Int. J. Ind. Electron. Drives 1(2014) 121-129. [35] E.A. Dil, M. Ghaedi, G.R. Ghezelbash, A. Asfaram, A.M. Ghaedi, F. Mehrabi, Modeling and optimization of Hg2+ ion biosorption by live yeast Yarrowia lipolytica 70562 from aqueous solutions under artificial neural network-genetic algorithm and response surface methodology:kinetic and equilibrium study, RSC Adv. 6(2016) 54149-54161. [36] S. Chowdhury, P.D. Saha, Artificial neural network (ANN) modeling of adsorption of methylene blue by NaOH-modified rice husk in a fixed-bed column system, Environ. Sci. Pollut. Res. 20(2013) 1050-1058. [37] C.K. Rojas-Mayorga, A. Bonilla-Petriciolet, F.J. Sánchez-Ruiz, J. Moreno-Pérez, H.E. Reynel-Ávila, I.A. Aguayo-Villarreal, D.I. Mendoza-Castillo, Breakthrough curve modeling of liquid-phase adsorption of fluoride ions on aluminum-doped bone char using micro-columns:effectiveness of data fitting approaches, J. Mol. Liq. 208(2015) 114-121. [38] M. Ghaedi, R. Hosaininia, A.M. Ghaedi, A. Vafaei, F. Taghizadeh, Adaptive neurofuzzy inference system model for adsorption of 1, 3, 4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon, Spectrochim. Acta A 131(2014) 606-614. [39] M. Şahin, R. Erol, A comparative study of neural networks and ANFIS for forecasting attendance rate of soccer games, Math. Comput. Appl. 22(2017) 43. [40] M.S. Lashkenari, A. KhazaiePoul, S. Ghasemi, M. Ghorbani, Adaptive neuro-fuzzy inference system prediction of Zn metal ions adsorption by γ-Fe2o3/polyrhodanine nanocomposite in a fixed bed column, Int. J. Eng. 31(2018) 1617-1623. [41] M.H. Marzbali, M. Esmaieli, Fixed bed adsorption of tetracycline on a mesoporous activated carbon:experimental study and neuro-fuzzy modeling, J. Appl. Res Technol. 15(2017) 454-463. [42] A. Baghban, J. Sasanipour, P. Haratipour, M. Alizad, M.V. Ayouri, ANFIS modeling of rhamnolipid breakthrough curves on activated carbon, Chem. Eng. Res. Des. 126(2017) 67-75. [43] H. Pfost, V. Headley, Methods of determining and expressing particle size, Feed Manuf. Technol. (1976) 512-517. [44] L.D. Benefield, J.F. Judkins, B.L. Weand, Process Chemistry for Water and Wastewater Treatment, Prentice Hall Inc., 1982 [45] US Environmental Protection Agency, Method 365.3:Phosphorous, all forms (colorimetric, ascorbic acid, two reagent), 1978. https://www.epa.gov/ [46] Z. Aksu, F. Gonen, Z. Demircan, Biosorption of chromium (VI) ions by Mowital®-B30H resin immobilized activated sludge in a packed bed:comparison with granular activated carbon, Process, Biochem. 38(2002) 175-186. [47] E. Oguz, M. Ersoy, Removal of Cu2+ from aqueous solution by adsorption in a fixed bed column and neural network modeling, Chem. Eng. J. 164(2010) 56-62. [48] S. Netpradit, P. Thiravetyan, S. Towprayoon, Evaluation of metal hydroxide sludge for reactive dye adsorption in a fixed-bed column system, Water Res. 38(2004) 71-78. [49] T.V.N. Padmesh, K. Vijayaraghavan, G. sekaran, M. Velan, Biosorption of Acid blue 15 using fresh water macroalga Azolla filiculoides:batch and column studies, Dyes Pigm 71(2006) 77-82. [50] S. Ayoob, A.K. Gupta, Sorptive reponse profile of an adsorbent in the defluoridation of drinking water, Chem. Eng. J. 133(2007) 273-281. [51] Z. Aksu, F. Gonen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed:Prediction of breakthrough curves, Process Biochem. 39(2004) 599-613. [52] M. Stojčić, D. Pamučar, E. Mahmutagić, Ž. Stević, Development of an ANFIS model for the optimization of a queuing system in warehouses, Information 9(2018) 240. [53] A.M. Abdulshahed, A.P. Longstaff, S. Fletcher, The application of ANFIS prediction models for thermal error compensation on CNC machine tools, Appl. Soft Comput. 27(2015) 158-168. [54] S. Chowdhury, S. Chakraborty, S.D. Papita, Removal of crystal violet from aqueous solution by adsorption onto eggshells:equilibrium, kinetics, thermodynamics and artificial neural network modeling, Waste Biomass Valor. 4(2013) 655-664. [55] C. Sutherland, B.S. Chittoo, C. Venkobachar, C. A comparative study of hybrid artificial neural network models for predicting Cr (VI) adsorption onto activated carbon, Desalin, Water Treat 103(2018) 182-198. [56] G. Garson, Interpreting neural-network connection weights, Artif. Intell. Expert. 6(1991) 46-51. [57] H. Paudyal, B. Pangeni, K. Inoue, H. Kawakita, K. Ohto, S. Alam, Adsorptive removal of fluoride from aqueous medium using a fixed bed column packed with Zr (IV) loaded dried orange juice residue, Bioresour. Technol. 146(2013) 713-720. [58] D. Shanmugam, M. Alagappan, R.K. Rajan, Bench-scale packed bed sorption of Cibacron blue F3GA using lucrative algal biomass, Alexandria Eng. J. 55(2016) 2995-3003. [59] B. Khoshnevisan, S. Rafiee, M. Omid, H. Mousazadeh, Development of an Intelligent System Based on ANFIS for Predicting Wheat Grain Yield on Energy Inputs, The Basis of Information Processing in Agriculture, 1, 201414-22. [60] S. Saeed, K. Honeyeh, K. Ozgur, L. Wen-Cheng, Water temperature prediction in a subtropical subalpine lake using soft computing techniques, Earth Sci. Res. J. 20(2016) 1-11. [61] B. Volesky, N. Kuyucak, Desorption of cobalt-laden algal biosorvent, Biotechnol. Bioeng. 33(1988) 815-822. [62] W.B. Amorim, A.M. Hayashi, P.F. Pimentel, M.G.C. Da Silva, A study of the process of desorption of hexavalent chromium, Braz. J. Chem. Eng. 20(2003) 283-289. [63] P.S. Kumar, L. Korving, M.C. van Loosdrecht, G.J. Witkamp, Adsorption as a Technology to Achieve Ultra-Low Concentrations of Phosphate:Research Gaps and Economic Analysis, Water Res.X (4) (2019), 100029. [64] K. Kuzawa, Y.J. Jung, Y. Kiso, T. Yamada, M. Nagai, T.G. Lee, Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent, Chemosphere 62(2006) 45-52. |