[1] M. Markiewicz, Y.Q. Zhang, A. Bosmann, N. Bruckner, J. Thoming, P. Wasserscheid, S. Stolte, Environmental and health impact assessment of Liquid Organic Hydrogen Carrier (LOHC) systems-challenges and preliminary results, Energy Environ. Sci. 8(2015) 1035-1045. [2] K. Sordakis, C. Tang, L.K. Vogt, H. Junge, P.J. Dyson, M. Beller, G. Laurenczy, Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols, Chem. Rev. 118(2018) 372-433. [3] Q.-L. Zhu, Q. Xu, Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage, Energy Environ. Sci. 8(2015) 478-512. [4] N. Kariya, A. Fukuoka, M. Ichikawa, Efficient evolution of hydrogen from liquid cycloalkanes over Pt-containing catalysts supported on active carbons under "wet-dry multiphase conditions", Appl. Catal. A Gen. 233(2002) 91-102. [5] Z. Kou, Z. Zhi, G. Xu, Y. An, C. He, Investigation of the performance and deactivation behavior of Raney-Ni catalyst in continuous dehydrogenation of cyclohexane under multiphase reaction conditions, Appl. Catal. A Gen. 467(2013) 196-201. [6] J. Li, Y. Chai, B. Liu, Y. Wu, X. Li, Z. Tang, Y. Liu, C. Liu, The catalytic performance of Ni2P/Al2O3 catalyst in comparison with Ni/Al2O3 catalyst in dehydrogenation of cyclohexane, Appl. Catal. A Gen. 469(2014) 434-441. [7] A.N. Kalenchuk, V.I. Bogdan, S.F. Dunaev, L.M. Kustov, Dehydrogenation of polycyclic naphthenes on a Pt/C catalyst for hydrogen storage in liquid organic hydrogen carriers, Fuel Process. Technol. 169(2018) 94-100. [8] A.A. Shukla, P.V. Gosavi, J.V. Pande, V.P. Kumar, K.V.R. Chary, R.B. Biniwale, Efficient hydrogen supply through catalytic dehydrogenation of methylcyclohexane over Pt/metal oxide catalysts, Int. J. Hydrog. Energy 35(2010) 4020-4026. [9] L. Meng, X. Yu, T. Niimi, H. Nagasawa, M. Kanezashi, T. Yoshioka, T. Tsuru, Methylcyclohexane dehydrogenation for hydrogen production via a bimodal catalytic membrane reactor, AIChE J. 61(2015) 1628-1638. [10] A. Nakano, S. Manabe, T. Higo, H. Seki, S. Nagatake, T. Yabe, S. Ogo, T. Nagatsuka, Y. Sugiura, H. Iki, Y. Sekine, Effects of Mn addition on dehydrogenation of methylcyclohexane over Pt/Al2O3 catalyst, Appl. Catal. A Gen. 543(2017) 75-81. [11] Y.-R. Chen, T. Tsuru, D.-Y. Kang, Simulation and design of catalytic membrane reactor for hydrogen production via methylcyclohexane dehydrogenation, Int. J. Hydrog. Energy 42(2017) 26296-26307. [12] G. Li, T. Niimi, M. Kanezashi, T. Yoshioka, T. Tsuru, Equilibrium shift of methylcyclohexane dehydrogenation in a thermally stable organosilica membrane reactor for high-purity hydrogen production, Int. J. Hydrog. Energy 38(2013) 15302-15306. [13] A. Shukla, J.V. Pande, R.B. Biniwale, Dehydrogenation of methylcyclohexane over Pt/V2O5 and Pt/Y2O3 for hydrogen delivery applications, Int. J. Hydrog. Energy 37(2012) 3350-3357. [14] J. Yan, W. Wang, L. Miao, K. Wu, G. Chen, Y. Huang, Y. Yang, Dehydrogenation of methylcyclohexane over PtSn supported on MgAl mixed metal oxides derived from layered double hydroxides, Int. J. Hydrog. Energy 43(2018) 9343-9352. [15] C. Zhang, X. Liang, S. Liu, Hydrogen production by catalytic dehydrogenation of methylcyclohexane over Pt catalysts supported on pyrolytic waste tire char, Int. J. Hydrog. Energy 36(2011) 8902-8907. [16] N. Boufaden, R. Akkari, B. Pawelec, J.L.G. Fierro, M.S. Zina, A. Ghorbel, Dehydrogenation of methylcyclohexane to toluene over partially reduced silica-supported Pt-Mo catalysts, J. Mol. Catal. A Chem. 420(2016) 96-106. [17] J. Yu, Q. Ge, W. Fang, H. Xu, Enhanced performance of Ca-doped Pt/γ-Al2O3 catalyst for cyclohexane dehydrogenation, Int. J. Hydrog. Energy 36(2011) 11536-11544. [18] N. Wang, J.E. Qiu, J. Wu, X. Yuan, K. You, H.A. Luo, Microwave assisted synthesis of Sn-modified MgAlO as support for platinum catalyst in cyclohexane dehydrogenation to cyclohexene, Appl. Catal. A:Gen. 516(2016) 9-16. [19] L. Deng, T. Arakawa, T. Ohkubo, H. Miura, T. Shishido, S. Hosokawa, K. Teramura, T. Tanaka, Highly active and stable Pt-Sn/SBA-15 catalyst prepared by direct reduction for ethylbenzene dehydrogenation:effects of Sn addition, Ind. Eng. Chem. Res. 56(2017) 7160-7172. [20] Y.X. Tuo, L.J. Shi, H.Y. Cheng, Y.A. Zhu, M.L. Yang, J. Xu, Y.F. Han, P. Li, W.K. Yuan, Insight into the support effect on the particle size effect of Pt/C catalysts in dehydrogenation, J. Catal. 360(2018) 175-186. [21] A. Chen, W. Zhang, X. Li, D. Tan, X. Han, X. Bao, One-pot encapsulation of Pt nanoparticles into the mesochannels of SBA-15 and their catalytic dehydrogenation of Methylcyclohexane, Catal. Lett. 119(2007) 159-164. [22] J. Shi, Y. Zhou, Y. Zhang, S. Zhou, Z. Zhang, J. Kong, M. Guo, Synthesis of magnesiummodified mesoporous Al2O3 with enhanced catalytic performance for propane dehydrogenation, J. Mater. Sci. 49(2014) 5772-5781. [23] C.E. Daza, J. Gallego, F. Mondragón, S. Moreno, R. Molina, High stability of Cepromoted Ni/Mg-Al catalysts derived from hydrotalcites in dry reforming of methane, Fuel 89(2010) 592-603. [24] X. Liu, B. Fan, S. Gao, R. Li, Transesterification of tributyrin with methanol over MgAl mixed oxides derived from MgAl hydrotalcites synthesized in the presence of glucose, Fuel Process. Technol. 106(2013) 761-768. [25] L. Jin, B. Ma, S. Zhao, X. He, Y. Li, H. Hu, Z. Lei, Ni/MgO-Al2O3 catalyst derived from modified[Ni,Mg,Al]-LDH with NaOH for CO2 reforming of methane, Int. J. Hydrog. Energy 43(2018) 2689-2698. [26] Y. Ma, Q. Wang, L. Zheng, Z. Gao, Q. Wang, Y. Ma, Mixed methanol/ethanol on transesterification of waste cooking oil using Mg/Al hydrotalcite catalyst, Energy 107(2016) 523-531. [27] L. Zardin, O.W. Perez-Lopez, Hydrogen production by methane decomposition over Co-Al mixed oxides derived from hydrotalcites:Effect of the catalyst activation with H2 or CH4, Int. J. Hydrog. Energy 42(2017) 7895-7907. [28] B. Li, Z. Xu, F. Jing, S. Luo, W. Chu, Facile one-pot synthesized ordered mesoporous Mg-SBA-15 supported PtSn catalysts for propane dehydrogenation, Appl. Catal. A Gen. 533(2017) 17-27. [29] A.U. Nilekar, S. Alayoglu, B. Eichhorn, M. Mavrikakis, Preferential CO oxidation in hydrogen:Reactivity of Core-Shell nanoparticles, J. Am. Chem. Soc. 132(2010) 7418-7428. [30] M.A. Vicerich, V.M. Benitez, C. Especel, F. Epron, C.L. Pieck, Influence of iridium content on the behavior of Pt-Ir/Al2O3 and Pt-Ir/TiO2 catalysts for selective ring opening of naphthenes, Appl. Catal. A Gen. 453(2013) 167-174. [31] S. Hu, L. Xiong, X. Ren, C. Wang, Y. Luo, Pt-Ir binary hydrophobic catalysts:Effects of Ir content and particle size on catalytic performance for liquid phase catalytic exchange, Int. J. Hydrog. Energy 34(2009) 8723-8732. [32] L. Wu, Z. Liu, M. Xu, J. Zhang, X. Yang, Y. Huang, J. Lin, D. Sun, L. Xu, Y. Tang, Facile synthesis of ultrathin Pd-Pt alloy nanowires as highly active and durable catalysts for oxygen reduction reaction, Int. J. Hydrog. Energy 41(2016) 6805-6813. [33] I.G. Kim, I.W. Nah, I.H. Oh, S. Park, Crumpled rGO-supported Pt-Ir bifunctional catalyst prepared by spray pyrolysis for unitized regenerative fuel cells, J. Power Sources 364(2017) 215-225. [34] P. Liu, J.A. Rodriguez, Catalysts for hydrogen evolution from the[NiFe] hydrogenase to the Ni2P (001) surface:The importance of ensemble effect, J. Am. Chem. Soc. 127(2005) 14871-14878. [35] H.Z. Wang, L.L. Sun, Z.J. Sui, Y.A. Zhu, G.H. Ye, D. Chen, X.G. Zhou, W.K. Yuan, Coke formation on Pt-Sn/Al2O3 catalyst for propane dehydrogenation, Ind. Eng. Chem. Res. 57(2018) 8647-8654. [36] P. Sun, G. Siddiqi, W.C. Vining, M. Chi, A.T. Bell, Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation, J. Catal. 282(2011) 165-174. [37] L. Zhang, Z.Y. Wang, J. Song, Y. Lang, J.G. Chen, Q.X. Luo, Z.H. He, K. Wang, Z.W. Liu, Z.T. Liu, Facile synthesis of SiO2 supported GaN as an active catalyst for CO2 enhanced dehydrogenation of propane, J. CO2 Utilization 38(2020) 306-313. [38] Z.T. Shi, W. Kang, J. Xu, Y.W. Sun, M. Jiang, T.W. Ng, H.T. Xue, D.Y.W. Yu, W. Zhang, C. S. Lee, Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries, Nano Energy 22(2016) 27-37. |