中国化学工程学报 ›› 2020, Vol. 28 ›› Issue (8): 2010-2021.DOI: 10.1016/j.cjche.2020.05.027
Huanhao Chen1, Yibing Mu2, Shanshan Xu2, Shaojun Xu3,4, Christopher Hardacre2, Xiaolei Fan2
收稿日期:
2020-02-11
修回日期:
2020-04-24
出版日期:
2020-08-28
发布日期:
2020-09-19
通讯作者:
Huanhao Chen, Christopher Hardacre, Xiaolei Fan
基金资助:
Huanhao Chen1, Yibing Mu2, Shanshan Xu2, Shaojun Xu3,4, Christopher Hardacre2, Xiaolei Fan2
Received:
2020-02-11
Revised:
2020-04-24
Online:
2020-08-28
Published:
2020-09-19
Contact:
Huanhao Chen, Christopher Hardacre, Xiaolei Fan
Supported by:
摘要: C1 chemistry mainly involves the catalytic transformation of C1 molecules (i.e., CO, CO2, CH4 and CH3OH), which usually encounters thermodynamic and/or kinetic limitations. To address these limitations, non-thermal plasma (NTP) activated heterogeneous catalysis offers a number of advantages, such as relatively mild reaction conditions and energy efficiency, in comparison to the conventional thermal catalysis. This review presents the state-of-the-art for the application of NTP-catalysis towards C1 chemistry, including the CO2 hydrogenation, reforming of CH4 and CH3OH, and water-gas shift (WGS) reaction. In the hybrid NTP-catalyst system, the plasma-catalyst interactions are multifaceted. Accordingly, this review also includes a brief discussion on the fundamental research into the mechanisms of NTP activated catalytic C1 chemistry, such as the advanced characterisation methods (e.g., in situ diffuse reflectance infrared Fourier transform spectroscopy, DRIFTS), temperatureprogrammed plasma surface reaction (TPPSR), kinetic studies. Finally, prospects for the future research on the development of tailor-made catalysts for NTP-catalysis systems (which will enable the further understanding of its mechanism) and the translation of the hybrid technique to practical applications of catalytic C1 chemistry are discussed.
Huanhao Chen, Yibing Mu, Shanshan Xu, Shaojun Xu, Christopher Hardacre, Xiaolei Fan. Recent advances in non-thermal plasma (NTP) catalysis towards C1 chemistry[J]. 中国化学工程学报, 2020, 28(8): 2010-2021.
Huanhao Chen, Yibing Mu, Shanshan Xu, Shaojun Xu, Christopher Hardacre, Xiaolei Fan. Recent advances in non-thermal plasma (NTP) catalysis towards C1 chemistry[J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2010-2021.
[1] W.-G. Cui, G.-Y. Zhang, T.-L. Hu, X.-H. Bu, Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry:CO, CO2 and CH4, Coord. Chem. Rev. 387(2019) 79-120. [2] W. Zhou, K. Cheng, J. Kang, C. Zhou, V. Subramanian, Q. Zhang, Y. Wang, New horizon in C1 chemistry:Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels, Chem. Soc. Rev. 48(2019) 3193-3228. [3] K. Li, B. Peng, T. Peng, Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels, ACS Catal. 6(2016) 7485-7527. [4] W. Taifan, J. Baltrusaitis, CH4 conversion to value added products:Potential, limitations and extensions of a single step heterogeneous catalysis, Appl. Catal. B Environ. 198(2016) 525-547. [5] S. Kattel, P.J. Ramírez, J.G. Chen, J.A. Rodriguez, P. Liu, Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts, Science 355(2017) 1296-1299. [6] L.C. Buelens, V.V. Galvita, H. Poelman, C. Detavernier, G.B. Marin, Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle, Science 354(2016) 449-452. [7] S. Yao, X. Zhang, W. Zhou, R. Gao, W. Xu, Y. Ye, L. Lin, X. Wen, P. Liu, B. Chen, Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction, Science 357(2017) 389-393. [8] S. Sá, H. Silva, L. Brandão, J.M. Sousa, A. Mendes, Catalysts for methanol steam reforming-a review, Appl. Catal. B Environ. 99(2010) 43-57. [9] O. Martin, A.J. Martín, C. Mondelli, S. Mitchell, T.F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferré, J. Pérez-Ramírez, Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation, Angew. Chem. Int. Ed. 55(2016) 6261-6265. [10] Z. Zhang, S.-S. Wang, R. Song, T. Cao, L. Luo, X. Chen, Y. Gao, J. Lu, W.-X. Li, W. Huang, The most active cu facet for low-temperature water gas shift reaction, Nat. Commun. 8(2017) 1-10. [11] S. Kattel, P. Liu, J.G. Chen, Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface, J. Am. Chem. Soc. 139(2017) 9739-9754. [12] N.A.K. Aramouni, J.G. Touma, B.A. Tarboush, J. Zeaiter, M.N. Ahmad, Catalyst design for dry reforming of methane:Analysis review, Renew. Sust. Energ. Rev. 82(2018) 2570-2585. [13] B. Ashford, X. Tu, Non-thermal plasma technology for the conversion of CO2, Curr. Opin. Green Sustain. Chem. 3(2017) 45-49. [14] H.-H. Kim, Y. Teramoto, A. Ogata, H. Takagi, T. Nanba, Plasma catalysis for environmental treatment and energy applications, Plasma Chem. Plasma Process. 36(2016) 45-72. [15] P. Mehta, P. Barboun, D.B. Go, J.C. Hicks, W.F. Schneider, Catalysis enabled by plasma activation of strong chemical bonds:A review, ACS Energy Lett. 4(2019) 1115-1133. [16] J.C. Whitehead, Plasma Catalysis:Challenges and Future Perspectives, Plasma Catalysis, Springer2019, pp. 343-348. [17] J.C. Whitehead, Plasma-catalysis:Is it just a question of scale? Front. Chem. Sci. Eng. 13(2019) 264-273. [18] E.C. Neyts, K. Ostrikov, M.K. Sunkara, A. Bogaerts, Plasma catalysis:Synergistic effects at the nanoscale, Chem. Rev. 115(2015) 13408-13446. [19] E.C. Neyts, Plasma-surface interactions in plasma catalysis, Plasma Chem. Plasma Process. 36(2016) 185-212. [20] C.E. Stere, J.A. Anderson, S. Chansai, J.J. Delgado, A. Goguet, W.G. Graham, C. Hardacre, S.F.R. Taylor, X. Tu, Z. Wang, H. Yang, Non-thermal plasma activation of gold-based catalysts for low-temperature water-gas shift catalysis, Angew. Chem. Int. Ed. 56(2017) 5579-5583. [21] S. Xu, S. Chansai, C. Stere, B. Inceesungvorn, A. Goguet, K. Wangkawong, S.F.R. Taylor, N. Al-Janabi, C. Hardacre, P.A. Martin, X. Fan, Sustaining metal-organic frameworks for water-gas shift catalysis by non-thermal plasma, Nat. Catal. 2(2019) 142-148. [22] H. Chen, Y. Mu, Y. Shao, S. Chansai, H. Xiang, Y. Jiao, C. Hardacre, X. Fan, Non-thermal plasma (NTP) activated metal-organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation, AIChE J. 66(2020)https://doi.org/10.1002/aic.16853. [23] H. Chen, Y. Mu, Y. Shao, s. chansai, S. Xu, C. Stere, H. Xiang, R. Zhang, Y. Jiao, X. Fan, C. Hardacre, Coupling non-thermal plasma with Ni catalysts supported on BETA zeolite for catalytic CO2 methanation, Catal. Sci. Technol. 9(2019) 4135-4145. [24] R. Vakili, R. Gholami, C.E. Stere, S. Chansai, H. Chen, S.M. Holmes, Y. Jiao, C. Hardacre, X. Fan, Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts, Appl. Catal. B Environ. 260(2020) 118195. [25] R. Gholami, C.E. Stere, A. Goguet, C. Hardacre, Non-thermal-plasma-activated deNOx catalysis, philosophical transactions of the Royal Society A:Mathematical, Phys. Eng. Sci. 376(2018) 20170054. [26] A.M. Vandenbroucke, R. Morent, N. De Geyter, C. Leys, Non-thermal plasmas for non-catalytic and catalytic VOC abatement, J. Hazard. Mater. 195(2011) 30-54. [27] S.K. Veerapandian, C. Leys, N. De Geyter, R. Morent, Abatement of VOCs using packed bed non-thermal plasma reactors:A review, Catalysts 7(2017) 113. [28] N. Cherkasov, A. Ibhadon, P. Fitzpatrick, A review of the existing and alternative methods for greener nitrogen fixation, Chem. Eng. Process. Process Intensif. 90(2015) 24-33. [29] P. Peng, P. Chen, C. Schiappacasse, N. Zhou, E. Anderson, D. Chen, J. Liu, Y. Cheng, R. Hatzenbeller, M. Addy, A review on the non-thermal plasma-assisted ammonia synthesis technologies, J. Clean. Prod. 177(2018) 597-609. [30] E. Neyts, A. Bogaerts, Understanding plasma catalysis through modelling and simulation-a review, J. Phys. D. Appl. Phys. 47(2014) 224010. [31] J.C. Whitehead, Plasma-catalysis:The known knowns, the known unknowns and the unknown unknowns, J. Phys. D. Appl. Phys. 49(2016) 243001. [32] L. Di, J. Zhang, X. Zhang, A review on the recent progress, challenges, and perspectives of atmospheric-pressure cold plasma for preparation of supported metal catalysts, Plasma Process. Polym. 15(2018) 1700234. [33] L. Wang, Y. Yi, H. Guo, X. Tu, Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2, ACS Catal. 8(2018) 90-100. [34] W. Keim, Carbon monoxide:Feedstock for chemicals, present and future, J. Organomet. Chem. 372(1989) 15-23. [35] D. Mei, X. Zhu, Y.-L. He, J.D. Yan, X. Tu, Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor:Understanding the effect of packing materials, Plasma Sources Sci. Technol. 24(2014), 015011. [36] M. Ramakers, I. Michielsen, R. Aerts, V. Meynen, A. Bogaerts, Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge, Plasma Process. Polym. 12(2015) 755-763. [37] D. Mei, X. Zhu, C. Wu, B. Ashford, P.T. Williams, X. Tu, Plasma-photocatalytic conversion of CO2 at low temperatures:Understanding the synergistic effect of plasma-catalysis, Appl. Catal. B Environ. 182(2016) 525-532. [38] D. Mei, Y.L. He, S. Liu, J. Yan, X. Tu, Optimization of CO2 conversion in a cylindrical dielectric barrier discharge reactor using design of experiments, Plasma Process. Polym. 13(2016) 544-556. [39] D. Mei, X. Tu, Atmospheric pressure non-thermal plasma activation of CO2 in a packed-bed dielectric barrier discharge reactor, ChemPhysChem 18(2017) 3253-3259. [40] D. Mei, X. Tu, Conversion of CO2 in a cylindrical dielectric barrier discharge reactor:Effects of plasma processing parameters and reactor design, J. CO2 Util. 19(2017) 68-78. [41] S. Xu, J.C. Whitehead, P.A. Martin, CO2 conversion in a non-thermal, barium titanate packed bed plasma reactor:The effect of dilution by Ar and N2, Chem. Eng. J. 327(2017) 764-773. [42] S. Xu, Plasma-Assisted Conversion of CO2, PhD Thesis, the University of Manchester, United Kingdom, University of Manchester, 2017. [43] S. Xu, P.I. Khalaf, P.A. Martin, J.C. Whitehead, CO2 dissociation in a packed-bed plasma reactor:Effects of operating conditions, Plasma Sources Sci. Technol. 27(2018) 075009. [44] Y. Uytdenhouwen, S. Van Alphen, I. Michielsen, V. Meynen, P. Cool, A. Bogaerts, A packed-bed DBD micro plasma reactor for CO2 dissociation:Does size matter? Chem. Eng. J. 348(2018) 557-568. [45] L. Li, H. Zhang, X. Li, X. Kong, R. Xu, K. Tay, X. Tu, Plasma-assisted CO2 conversion in a gliding arc discharge:Improving performance by optimizing the reactor design, J. CO2 Util. 29(2019) 296-303. [46] C.-j. Liu, G.-h. Xu, T. Wang, Non-thermal plasma approaches in CO2 utilization, Fuel Process. Technol. 58(1999) 119-134. [47] E. Jwa, S.B. Lee, H.W. Lee, Y.S. Mok, Plasma-assisted catalytic methanation of CO and CO2 over Ni-zeolite catalysts, Fuel Process. Technol. 108(2013) 89-93. [48] M. Nizio, R. Benrabbah, M. Krzak, R. Debek, M. Motak, S. Cavadias, M.E. Gálvez, P. Da Costa, Low temperature hybrid plasma-catalytic methanation over Ni-Ce-Zr hydrotalcite-derived catalysts, Catal. Commun. 83(2016) 14-17. [49] Y. Zeng, X. Tu, Plasma-catalytic CO2 hydrogenation at low temperatures, IEEE Trans. Plasma Sci. 44(2016) 405-411. [50] M. Nizio, A. Albarazi, S. Cavadias, J. Amouroux, M.E. Galvez, P. Da Costa, Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts, Int. J. Hydrog. Energy 41(2016) 11584-11592. [51] R. Benrabbah, C. Cavaniol, H. Liu, S. Ognier, S. Cavadias, M.E. Gálvez, P. Da Costa, Plasma DBD activated ceria-zirconia-promoted Ni-catalysts for plasma catalytic CO2 hydrogenation at low temperature, Catal. Commun. 89(2017) 73-76. [52] F. Azzolina-Jury, D. Bento, C. Henriques, F. Thibault-Starzyk, Chemical engineering aspects of plasma-assisted CO2 hydrogenation over nickel zeolites under partial vacuum, J. CO2 Util. 22(2017) 97-109. [53] Y. Zeng, X. Tu, Plasma-catalytic hydrogenation of CO2 for the cogeneration of CO and CH4 in a dielectric barrier discharge reactor:Effect of argon addition, J. Phys. D. Appl. Phys. 50(2017) 184004. [54] M.C. Bacariza, M. Biset-Peiró, I. Graça, J. Guilera, J. Morante, J.M. Lopes, T. Andreu, C. Henriques, DBD plasma-assisted CO2 methanation using zeolite-based catalysts:Structure composition-reactivity approach and effect of Ce as promoter, J. CO2 Util. 26(2018) 202-211. [55] H. Chen, F. Goodarzi, Y. Mu, S. Chansai, J.J. Mielby, B. Mao, T. Sooknoi, S. Kegnæs, C. Hardacre, X. Fan, Effect of metal dispersion and support structure of Ni/Silicalite-1 catalysts on non-thermal plasma (NTP) activated CO2 hydrogenation, Appl. Catal. B Environ. 272(2020) 119013. [56] H. Chen, Y. Mu, C. Hardacre, X. Fan, Integration of membrane separation with nonthermal plasma (NTP) catalysis:A proof-of-concept for CO2 capture and utilisation (CCU), Ind. Eng. Chem. Res. 59(2020) 8202-8211. [57] Y. Mu, S. Xu, H. Chen, C. Hardacre, X. Fan, Kinetic study of non-thermal plasma (NTP) activated catalytic CO2 hydrogenation over Ni supported on silica-catalyst, Ind. Eng. Chem. Res. 59(2020) 9478-9487. [58] W. Xu, X. Zhang, M. Dong, J. Zhao, L. Di, Plasma-assisted Ru/Zr-MOF catalyst for hydrogenation of CO2 to methane, Plasma Sci. Technol. 4(2018) 27-33. [59] W. Xu, M. Dong, L. Di, X. Zhang, A facile method for preparing UiO-66 encapsulated Ru catalyst and its application in plasma-assisted CO2 Methanation, Nanomaterials 9(2019) 1432. [60] M.C. Bacariza, R. Bértolo, I. Graça, J.M. Lopes, C. Henriques, The effect of the compensating cation on the catalytic performances of Ni/USY zeolites towards CO2 methanation, J. CO2 Util. 21(2017) 280-291. [61] B. Eliasson, U. Kogelschatz, B. Xue, L.-M. Zhou, Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst, Ind. Eng. Chem. Res. 37(1998) 3350-3357. [62] C. De Bie, J. van Dijk, A. Bogaerts, CO2 hydrogenation in a dielectric barrier discharge plasma revealed, J. Phys. Chem. C 120(2016) 25210-25224. [63] B. Zhao, Y. Liu, Z. Zhu, H. Guo, X. Ma, Highly selective conversion of CO2 into ethanol on Cu/ZnO/Al2O3 catalyst with the assistance of plasma, J. CO2 Util. 24(2018) 34-39. [64] M. Liu, Y. Yi, L. Wang, H. Guo, A. Bogaerts, Hydrogenation of carbon dioxide to value-added chemicals by heterogeneous catalysis and plasma catalysis, Catalysts 9(2019) 275. [65] B. Eliasson, F. Simon, W. Egli, Hydrogenation of CO2 in a silent discharge, non-thermal plasma techniques for pollution Control, Springer (1993) 321-337. [66] M. Alvarez-Galvan, N. Mota, M. Ojeda, S. Rojas, R. Navarro, J. Fierro, Direct methane conversion routes to chemicals and fuels, Catal. Today 171(2011) 15-23. [67] P. Tang, Q. Zhu, Z. Wu, D. Ma, Methane activation:The past and future, Energy Environ. Sci. 7(2014) 2580-2591. [68] E.V. Kondratenko, T. Peppel, D. Seeburg, V.A. Kondratenko, N. Kalevaru, A. Martin, S. Wohlrab, Methane conversion into different hydrocarbons or oxygenates:Current status and future perspectives in catalyst development and reactor operation, Catal. Sci. Technol. 7(2017) 366-381. [69] L. Sun, Y. Wang, N. Guan, L. Li, Methane activation and utilization:Current status and future challenges, Energy Technol. (2019)https://doi.org/10.1002/ente.201900826. [70] J.-P. Lange, V.L. Sushkevich, A.J. Knorpp, J.A. van Bokhoven, Methane-to-methanol via chemical looping:Economic potential and guidance for future research, Ind. Eng. Chem. Res. 58(2019) 8674-8680. [71] C. Hammond, R.L. Jenkins, N. Dimitratos, J.A. Lopez-Sanchez, M.H. Ab Rahim, M.M. Forde, A. Thetford, D.M. Murphy, H. Hagen, E.E. Stangland, Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5, Chem. Eur. J. 18(2012) 15735-15745. [72] X. Cui, H. Li, Y. Wang, Y. Hu, L. Hua, H. Li, X. Han, Q. Liu, F. Yang, L. He, Roomtemperature methane conversion by graphene-confined single iron atoms, Chem 4(2018) 1902-1910. [73] F.M. Aghamir, N.S. Matin, A.-H. Jalili, M. Esfarayeni, M. Khodagholi, R. Ahmadi, Conversion of methane to methanol in an ac dielectric barrier discharge, Plasma Sources Sci. Technol. 13(2004) 707. [74] A. Indarto, A review of direct methane conversion to methanol by dielectric barrier discharge, IEEE Trans. Dielectr. Electr. Insul. 15(2008) 1038-1043. [75] A. Indarto, J.-W. Choi, H. Lee, H.K. Song, The kinetic studies of direct methane oxidation to methanol in the plasma process, Chin. Sci. Bull. 53(2008) 2783-2792. [76] L. Chen, X.-W. Zhang, L. Huang, L.-C. Lei, Partial oxidation of methane with air for methanol production in a post-plasma catalytic system, Chem. Eng. Process. Process Intensif. 48(2009) 1333-1340. [77] L. Huang, X.-w. Zhang, L. Chen, L.-c. Lei, Direct oxidation of methane to methanol over Cu-based catalyst in an ac dielectric barrier discharge, Plasma Chem. Plasma Process. 31(2011) 67-77. [78] T.M. HAJI, Y.E. MORTAZAVI, A. Khodadadi, Z.S. MOHAJER, Synergetic effects of plasma, temperature and diluant on nonoxidative conversion of methane to C2+ hydrocarbons in a dielectric barrier discharge reactor, Iranian J. Chem. Chem. Eng. 24(2005) 63-71. [79] P. Kasinathan, S. Park, W.C. Choi, Y.K. Hwang, J.-S. Chang, Y.-K. Park, Plasma-enhanced methane direct conversion over particle-size adjusted MOx/Al2O3(M=Ti and Mg) catalysts, Plasma Chem. Plasma Process. 34(2014) 1317-1330. [80] H. Lee, D.-H. Lee, J.M. Ha, D.H. Kim, Plasma assisted oxidative coupling of methane (OCM) over Ag/SiO2 and subsequent regeneration at low temperature, Appl. Catal. A Gen. 557(2018) 39-45. [81] A. Górska, K. Krawczyk, S. Jodzis, K. Schmidt-Szałowski, Non-oxidative methane coupling using Cu/ZnO/Al2O3 catalyst in DBD, Fuel 90(2011) 1946-1952. [82] M. Taheraslani, Non-oxidative Coupling of Methane to C2 Hydrocarbons:Integration of Dielectric Barrier Discharge Plasma and Catalyst Packed Bed, PhD Thesis, University of Twente, Netherlands, 2019 https://doi.org/10.3990/1.9789036546836. [83] C.-J. Liu, B. Xue, B. Eliasson, F. He, Y. Li, G.-H. Xu, Methane conversion to higher hydrocarbons in the presence of carbon dioxide using dielectric-barrier discharge plasmas, Plasma Chem. Plasma Process. 21(2001) 301-310. [84] S.-S. Kim, H. Lee, J.-W. Choi, B.-K. Na, H.K. Song, Methane conversion to higher hydrocarbons in a dielectric-barrier discharge reactor with Pt/γ-Al2O3 catalyst, Catal. Commun. 8(2007) 1438-1442. [85] N.S. Matin, H.A. Savadkoohi, S.Y. Feizabadi, Methane conversion to C2 hydrocarbons using dielectric-barrier discharge reactor:Effects of system variables, Plasma Chem. Plasma Process. 28(2008) 189-202. [86] X.-S. Li, A.-M. Zhu, K.-J. Wang, Y. Xu, Z.-M. Song, Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques, Catal. Today 98(2004) 617-624. [87] B. Wang, W. Yan, W. Ge, X. Duan, Kinetic model of the methane conversion into higher hydrocarbons with a dielectric barrier discharge microplasma reactor, Chem. Eng. J. 234(2013) 354-360. [88] Y. Yang, Direct non-oxidative methane conversion by non-thermal plasma:Modeling study, Plasma Chem. Plasma Process. 23(2003) 327-346. [89] B. Eliasson, C.-j. Liu, U. Kogelschatz, Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites, Ind. Eng. Chem. Res. 39(2000) 1221-1227. [90] N.A.S. Amin, Co-generation of synthesis gas and C2+ hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor:A review, Fuel 85(2006) 577-592. [91] F. Wang, B. Han, L. Zhang, L. Xu, H. Yu, W. Shi, CO2 reforming with methane over small-sized Ni@SiO2 catalysts with unique features of sintering-free and low carbon, Appl. Catal. B Environ. 235(2018) 26-35. [92] M. Pham, V. Goujard, J. Tatibouët, C. Batiot-Dupeyrat, Activation of methane and carbon dioxide in a dielectric-barrier discharge-plasma reactor to produce hydrocarbons-influence of La2O3/γ-Al2O3 catalyst, Catal. Today 171(2011) 67-71. [93] A. Indarto, H. Lee, J.-W. Choi, H.K. Song, Partial oxidation of methane with yttriastabilized zirconia catalyst in a dielectric barrier discharge, Energy Sources A 30(2008) 1628-1636. [94] M. Scapinello, L.M. Martini, P. Tosi, CO2 hydrogenation by CH4 in a dielectric barrier discharge:Catalytic effects of nickel and copper, Plasma Process. Polym. 11(2014) 624-628. [95] H.S. Potdar, H.-S. Roh, K.-W. Jun, M. Ji, Z.-W. Liu, Carbon dioxide reforming of methane over co-precipitated Ni-Ce-ZrO2 catalysts, Catal. Lett. 84(2002) 95-100. [96] T. Kolb, J.H. Voigt, K.-H. Gericke, Conversion of methane and carbon dioxide in a DBD reactor:Influence of oxygen, Plasma Chem. Plasma Process. 33(2013) 631-646. [97] X. Gao, G. Liu, Q. Wei, G. Yang, M. Masaki, X. Peng, R. Yang, N. Tsubaki, Carbon nanofibers decorated SiC foam monoliths as the support of anti-sintering Ni catalyst for methane dry reforming, Int. J. Hydrog. Energy 42(2017) 16547-16556. [98] S. Mahammadunnisa, P. Manoj Kumar Reddy, B. Ramaraju, C. Subrahmanyam, Catalytic nonthermal plasma reactor for dry reforming of methane, Energy Fuels 27(2013) 4441-4447. [99] N. Pegios, G. Schroer, K. Rahimi, R. Palkovits, K. Simeonov, Design of modular Nifoam based catalysts for dry reforming of methane, Catal. Sci. Technol. 6(2016) 6372-6380. [100] Q. Wang, B.-H. Yan, Y. Jin, Y. Cheng, Dry reforming of methane in a dielectric barrier discharge reactor with Ni/Al2O3 catalyst:Interaction of catalyst and plasma, Energy Fuels 23(2009) 4196-4201. [101] D. Ray, D. Nepak, S. Janampelli, P. Goshal, C. Subrahmanyam, Dry reforming of methane in DBD plasma over Ni-based catalysts:Influence of process conditions and support on performance and durability, Energy Technol. 7(2019) 1801008. [102] H. Ay, D. Üner, Dry reforming of methane over CeO2 supported Ni, Co and Ni-Co catalysts, Appl. Catal. B Environ. 179(2015) 128-138. [103] X. Tu, J. Whitehead, Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge:Understanding the synergistic effect at low temperature, Appl. Catal. B Environ. 125(2012) 439-448. [104] J. Dou, R. Zhang, X. Hao, Z. Bao, T. Wu, B. Wang, F. Yu, Sandwiched SiO2@Ni@ZrO2 as a coke resistant nanocatalyst for dry reforming of methane, Appl. Catal. B Environ. 254(2019) 612-623. [105] X. Zheng, S. Tan, L. Dong, S. Li, H. Chen, Silica-coated LaNiO3 nanoparticles for nonthermal plasma assisted dry reforming of methane:Experimental and kinetic studies, Chem. Eng. J. 265(2015) 147-156. [106] X. Zheng, S. Tan, L. Dong, S. Li, H. Chen, LaNiO3@SiO2 core-shell nano-particles for the dry reforming of CH4 in the dielectric barrier discharge plasma, Int. J. Hydrog. Energy 39(2014) 11360-11367. [107] A.H. Khoja, M. Tahir, N.A.S. Amin, Process optimization of DBD plasma dry reforming of methane over Ni/La2O3MgAl2O4 using multiple response surface methodology, Int. J. Hydrog. Energy 44(2019) 11774-11787. [108] Y. Li, C.-J. Liu, B. Eliasson, Y. Wang, Synthesis of oxygenates and higher hydrocarbons directly from methane and carbon dioxide using dielectric-barrier discharges:Product distribution, Energy Fuel 16(2002) 864-870. [109] J.-J. Zou, Y.-p. Zhang, C.-J. Liu, Y. Li, B. Eliasson, Starch-enhanced synthesis of oxygenates from methane and carbon dioxide using dielectric-barrier discharges, Plasma Chem. Plasma Process. 23(2003) 69-82. [110] J.-g. Wang, C.-j. Liu, Y.-p. Zhang, B. Eliasson, A DFT study of synthesis of acetic acid from methane and carbon dioxide, Chem. Phys. Lett. 368(2003) 313-318. [111] J.-g. Wang, C.-j. Liu, B. Eliassion, Density functional theory study of synthesis of oxygenates and higher hydrocarbons from methane and carbon dioxide using cold plasmas, Energy Fuel 18(2004) 148-153. [112] L. Wang, Y. Yi, C. Wu, H. Guo, X. Tu, One-step reforming of CO2 and CH4 into highvalue liquid chemicals and fuels at room temperature by plasma-driven catalysis, Angew. Chem. Int. Ed. 56(2017) 13679-13683. [113] C. Du, J. Mo, H. Li, Renewable hydrogen production by alcohols reforming using plasma and plasma-catalytic technologies:Challenges and opportunities, Chem. Rev. 115(2015) 1503-1542. [114] H. Zhang, X. Li, F. Zhu, Z. Bo, K. Cen, X. Tu, Non-oxidative decomposition of methanol into hydrogen in a rotating gliding arc plasma reactor, Int. J. Hydrog. Energy 40(2015) 15901-15912. [115] H. Zhang, F. Zhu, X. Li, K. Cen, C. Du, X. Tu, Enhanced hydrogen production by methanol decomposition using a novel rotating gliding arc discharge plasma, RSC Adv. 6(2016) 12770-12781. [116] Y. Jiao, X. Fan, M. Perdjon, Z. Yang, J. Zhang, Vapor-phase transport (VPT) modification of ZSM-5/SiC foam catalyst using TPAOH vapor to improve the methanol-topropylene (MTP) reaction, Appl. Catal. A Gen. 545(2017) 104-112. [117] H.-Y. Lian, X.-S. Li, J.-L. Liu, X. Zhu, A.-M. Zhu, Oxidative pyrolysis reforming of methanol in warm plasma for an on-board hydrogen production, Int. J. Hydrog. Energy 42(2017) 13617-13624. [118] D.H. Lee, T. Kim, Plasma-catalyst hybrid methanol-steam reforming for hydrogen production, Int. J. Hydrog. Energy 38(2013) 6039-6043. [119] T. Kim, S. Jo, Y.-H. Song, D.H. Lee, Synergetic mechanism of methanol-steam reforming reaction in a catalytic reactor with electric discharges, Appl. Energy 113(2014) 1692-1699. [120] W. Ge, X. Duan, Y. Li, B. Wang, Plasma-catalyst synergy during methanol steam reforming in dielectric barrier discharge micro-plasma reactors for hydrogen production, Plasma Chem. Plasma Process. 35(2015) 187-199. [121] H.-Y. Lian, J.-L. Liu, X.-S. Li, X. Zhu, A.Z. Weber, A.-M. Zhu, Plasma chain catalytic reforming of methanol for on-board hydrogen production, Chem. Eng. J. 369(2019) 245-252. [122] H.-Y. Lian, X.-S. Li, J.-L. Liu, A.-M. Zhu, Methanol steam reforming by heat-insulated warm plasma catalysis for efficient hydrogen production, Catal. Today 337(2019) 76-82. [123] X.-S. Li, L.-Y. Wang, X.-L. Gong, H.-Y. Lian, J.-L. Liu, A.-M. Zhu, Evaluation of plasmaderived heat and synergistic effect for in-plasma catalytic steam reforming of methanol, J. Phys. D. Appl. Phys. 53(2019) 104003. [124] J. Zhang, Q. Yuan, J. Zhang, T. Li, H. Guo, Direct synthesis of ethylene glycol from methanol by dielectric barrier discharge, Chem. Commun. 49(2013) 10106-10108. [125] J. Zhang, T. Li, D. Wang, J. Zhang, H. Guo, The catalytic effect of H2 in the dehydrogenation coupling production of ethylene glycol from methanol using a dielectric barrier discharge, Chin. J. Catal. 36(2015) 274-282. [126] L. Wang, S.Y. Liu, C. Xu, X. Tu, Direct conversion of methanol to n-C4H10 and H2 in a dielectric barrier discharge reactor, Green Chem. 18(2016) 5658-5666. [127] H. Chen, M. Cao, L. Zhao, R.J. Ciora Jr., P.K. Liu, V.I. Manousiouthakis, T.T. Tsotsis, Experimental study of an intensified water-gas shift reaction process using a membrane reactor/adsorptive reactor sequence, Ind. Eng. Chem. Res. 57(2018) 13650-13660. [128] S. Karagöz, H. Chen, M. Cao, T.T. Tsotsis, V.I. Manousiouthakis, Multiscale model based design of an energy-intensified novel adsorptive reactor process for the water gas shift reaction, AIChE J. 65(2019) e16608. [129] A. Garshasbi, H. Chen, M. Cao, S. Karagöz, R.J. Ciora Jr., P.K. Liu, V.I. Manousiouthakis, T.T. Tsotsis, Membrane-based reactive separations for process intensification during power generation, Catal. Today 331(2019) 18-29. [130] H.A.J. van Dijk, K. Damen, M. Makkee, C. Trapp, Water-gas shift (WGS) operation of pre-combustion CO2 capture pilot plant at the Buggenum IGCC, Energy Procedia 63(2014) 2008-2015. [131] Y. Tanaka, T. Utaka, R. Kikuchi, K. Sasaki, K. Eguchi, Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels, Appl. Catal. A Gen. 242(2003) 287-295. [132] T. Magadzu, J. Yang, J. Henao, M. Kung, H.H. Kung, M. Scurrell, Low-temperature water-gas shift reaction over Au supported on Anatase in the presence of copper:EXAFS/XANES analysis of gold-copper ion mixtures on TiO2, J. Phys. Chem. C 121(2017) 8812-8823. [133] H.L. Chen, H.M. Lee, S.H. Chen, Y. Chao, M.B. Chang, Review of plasma catalysis on hydrocarbon reforming for hydrogen production-Interaction, integration, and prospects, Appl. Catal. B Environ. 85(2008) 1-9. [134] J. Van Durme, J. Dewulf, C. Leys, H. Van Langenhove, Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment:A review, Appl. Catal. B Environ. 78(2008) 324-333. [135] M. Meyyappan, A review of plasma enhanced chemical vapour deposition of carbon nanotubes, J. Phys. D. Appl. Phys. 42(2009) 213001. [136] E.K. Gibson, C.E. Stere, B. Curran-McAteer, W. Jones, G. Cibin, D. Gianolio, A. Goguet, P.P. Wells, C.R.A. Catlow, P. Collier, P. Hinde, C. Hardacre, Probing the role of a nonthermal plasma (NTP) in the hybrid NTP catalytic oxidation of methane, Angew. Chem. Int. Ed. 56(2017) 9351-9355. [137] C.E. Stere, W. Adress, R. Burch, S. Chansai, A. Goguet, W.G. Graham, F. De Rosa, V. Palma, C. Hardacre, Ambient temperature hydrocarbon selective catalytic reduction of NO x using atmospheric pressure nonthermal plasma activation of a ag/Al2O3 catalyst, ACS Catal. 4(2014) 666-673. [138] C.E. Stere, W. Adress, R. Burch, S. Chansai, A. Goguet, W.G. Graham, C. Hardacre, Probing a non-thermal plasma activated heterogeneously catalyzed reaction using in situ DRIFTS-MS, ACS Catal. 5(2015) 956-964. [139] F. Azzolina-Jury, F. Thibault-Starzyk, Mechanism of low pressure plasma-assisted CO2 hydrogenation over Ni-USY by microsecond time-resolved FTIR spectroscopy, Top. Catal. 60(2017) 1709-1721. [140] F. Azzolina-Jury, D. Bento, C. Henriques, F. Thibault-Starzyk, Chemical engineering aspects of plasma-assisted CO2 hydrogenation over nickel zeolites under partial vacuum, J. CO2 Util. 22(2017) 97-109. [141] A. Parastaev, W.F. Hoeben, B.E. van Heesch, N. Kosinov, E.J. Hensen, Temperatureprogrammed plasma surface reaction:An approach to determine plasmacatalytic performance, Appl. Catal. B Environ. 239(2018) 168-177. [142] T. Nozaki, H. Tsukijihara, W. Fukui, K. Okazaki, Kinetic analysis of the catalyst and nonthermal plasma hybrid reaction for methane steam reforming, Energy Fuels 21(2007) 2525-2530. [143] J. Kim, D.B. Go, J.C. Hicks, Synergistic effects of plasma-catalyst interactions for CH4 activation, Phys. Chem. Chem. Phys. 19(2017) 13010-13021. [144] K.H. Rouwenhorst, H.-H. Kim, L. Lefferts, Vibrationally excited activation of N2 in plasma-enhanced catalytic ammonia synthesis:A kinetic analysis, ACS Sustain. Chem. Eng. 7(2019) 17515-17522. [145] P.A. Christensen, A.H.B.M. Ali, Z.T.A.W. Mashhadani, M.A. Carroll, P.A. Martin, The production of ketene and C5O2 from CO2, N2 and CH4 in a non-thermal plasma catalysed by earth-abundant elements:An in-situ FTIR study, Plasma Chem. Plasma Process. 38(2018) 461-484. [146] J.J. Zou, C.J. Liu, Utilization of Carbon Dioxide through Nonthermal Plasma Approaches, Carbon Dioxide as Chemical Feedstock, (2010) 267-290. [147] C.J. Liu, J. Zou, K. Yu, D. Cheng, Y. Han, J. Zhan, C. Ratanatawanate, B.W.L. Jang, Plasma application for more environmentally friendly catalyst preparation, Pare & Applied Chemistily 78(2006) 1227-1238. |
[1] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene[J]. 中国化学工程学报, 2023, 60(8): 90-98. |
[2] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination[J]. 中国化学工程学报, 2023, 59(7): 193-199. |
[3] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic[J]. 中国化学工程学报, 2023, 58(6): 137-145. |
[4] | Sanya Du, Xiaomin Han, Wenjiu Cai, Jinlong Zhu, Xiaobai Ma, Songbai Han, Dongfeng Chen, Yusheng Zhao, Hui Li, Hailong Lu, Xiaohui Yu. Formation of the structure-II gas hydrate from low-concentration propane mixed with methane[J]. 中国化学工程学报, 2023, 58(6): 306-314. |
[5] | Bin Lin, Wenyao Chen, Nan Song, Zhihua Zhang, Qianhong Wang, Wei Du, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into propylene oxidation to acrolein over gold catalysts[J]. 中国化学工程学报, 2023, 57(5): 39-49. |
[6] | Yaqiao Liu, Shuozhen Hu, Xinsheng Zhang, Shigang Sun. Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array[J]. 中国化学工程学报, 2023, 57(5): 162-172. |
[7] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets[J]. 中国化学工程学报, 2023, 57(5): 319-328. |
[8] | Shanwei Xiong, Li Zhou, Yiyang Dai, Xu Ji. Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis[J]. 中国化学工程学报, 2023, 56(4): 1-14. |
[9] | Junao Zhu, Zhirong Yang, Yuanhan Chen, Mingming Chen, Zhen Liu, Yueqiang Cao, Jing Zhang, Gang Qian, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into the active intermediates of 2,6-diaminopyridine dinitration[J]. 中国化学工程学报, 2023, 56(4): 160-168. |
[10] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine[J]. 中国化学工程学报, 2023, 56(4): 225-232. |
[11] | Jiaxin Wu, Chenxiao Wang, Xianliang Meng, Haichen Liu, Ruizhi Chu, Guoguang Wu, Weisong Li, Xiaofeng Jiang, Deguang Yang. Enhancement of catalytic and anti-carbon deposition performance of SAPO-34/ZSM-5/quartz films in MTA reaction by Si/Al ratio regulation[J]. 中国化学工程学报, 2023, 56(4): 314-324. |
[12] | Qiongna Xiao, Yuyan Jiang, Weiqiang Yuan, Jingjing Chen, Haohong Li, Huidong Zheng. Styrene epoxidation catalyzed by polyoxometalate/quaternary ammonium phase transfer catalysts: The effect of cation size and catalyst deactivation mechanism[J]. 中国化学工程学报, 2023, 55(3): 192-201. |
[13] | Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation[J]. 中国化学工程学报, 2023, 53(1): 317-323. |
[14] | Yimin Zhang, Ruiming Zeng, Yun Zu, Linhua Zhu, Yi Mei, Yongming Luo, Dedong He. Low-temperature dry reforming of methane tuned by chemical speciations of active sites on the SiO2 and γ-Al2O3 supported Ni and Ni-Ce catalysts[J]. 中国化学工程学报, 2022, 48(8): 76-90. |
[15] | Lei Sun, Zhongjun Zhao, Xiushan Yang, Yan Sun, Quande Li, Chunhui Luo, Qiang Zhao. Thermochemical decomposition of phosphogypsum with Fe-P slag via a solid-state reaction[J]. 中国化学工程学报, 2022, 47(7): 113-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||