[1] Z. Wang, Study on the optimization of preparation technology of methyl nitrite, Ph D Thesis, Beijing University of Chemical Technology. China, 2017. (in Chinese) [2] B. Yu, C. Chung, I. Chien, Development of a plant-wide dimethyl oxalate (DMO) synthesis process from syngas:Rigorous design and optimization, Comp. Chem. Eng. 119(2018) 85-100. [3] G. Liu, J. Yang, W. Li, Kinetic study on methyl nitrite synthesis from methanol and dinitrogen trixiode, Chem. Eng. J. 157(2010) 483-488. [4] S. Wang, W. Li, Y. Dong, Y. Zhao, X. Ma, Dimethyl carbonate synthesis from methyl nitrite and CO over activated carbon supported Wacker-type catalysts:The surface chemistry of activated carbon, Catal. Comm. 72(2015) 43-48. [5] O. John, S.T. Geoffrey, G.C. Jack, Thermal decomposition pathways for peroxyacetyl nitrate (PAN):Implications for atmospheric methyl nitrate levels, Atmo. Envi. 26(1992) 3111-3118. [6] Z. Huang, Research on the Pyrolysis of Methyl Nitrite and Nitromethane, PhD Thesis, Dalian Maritime University, China, 2017. [7] P. Grap, A.R. Hall, H.G. Wolfhard, Decomposition flame of methyl nitrite, Nature 176(1955) 695-696. [8] L. Phillips, The pyrolysis of methyl nitrite, J. Chem. Soc. 591(1961) 3082-3090. [9] J.W. Peck, D.I. Mahon, D.E. Beck, B. Bansenaur, B.E. Koel, TPD, HREELS and UPS study of the adsorption and reaction of methyl nitrite (CH3ONO) on Pt (111), Surf. Sci. 410(1998) 214-227. [10] P.M. Joseph, Paradoxical ozone associations could be due to methyl nitrite from combustion of methyl ethers or esters in engine fuels, Environ. Int. 33(2007) 1090-1106. [11] Z. Wan, A death accident of acute methyl sulfite mixture poisoning, Chemical labor and health communication 11(1992) 34-36. [12] P. Coulter, M. Grubb, A. Orr-Ewing, Conformer-specific geminate recombination following methyl nitrite photolysis in solution, Chem. Phys. Lett. 683(2017) 416-442. [13] M. Sumida, S. Masumoto, M. Kato, K. Yamasaki, H. Kohguchi, Internal and translational energy partitioning of the NO product in the S2 photodissociation of methyl nitrite, Chem. Phys. Lett. 674(2017) 58-63. [14] S. Lin, J. Jing, X. Wang, Discussion on Control Parameters of Synthesis Process of Dimethyl Oxalate in Coal-to-Ethylene Glycol Rote, Goal and Chemical Industry 41(5) (2018) 133-135. [15] F. Stoessel, Thermal safety of chemical processes:Risk assessment and process design, J. Loss Prev. Process Ind. (7) (2008) 547-648. [16] S. Liu, W. Lin, H. Xia, H. Hou, C. Shu, Combustion of 1-butylimidazolium nitrate via DSC, TG, VSP2, FTIR, and GC/MS:An approach for thermal hazard, property and prediction assessment, Process. Saf. Environ. Prot. 116(2018) 603-614. [17] F. Zhang, M. Chen, X. Jia, Research on the effect of resin on the thermal stability of hydrogen peroxide, Process Saf. Environ. Prot. 126(2019) 1-6. [18] Y. Wang, Evaluation of self-heating models for peracetic acid using calorimetry, Process Saf. Environ. Prot. 113(2018) 122-131. [19] S. Liu, Y. Lu, C. Chiang, Determination of the thermal hazard and decomposition behaviors of 2,2'-azobis-(2,4-dimethylvaleronitrile), Process. Saf. Environ. Prot. 131(2019) 55-62. [20] D. Wu, X. Qian, Experimental study on the thermal runaway of hydrogen peroxide with in-/organic impurities by a batch reactor, Loss Prev. Process Ind. 51(2018) 200-207. [21] Y. Zheng, B. Chi, B. Wang, Application and comparison of several methods of equal conversion rate in kinetic research, Coal Convers 29(2006) 34-36. [22] Z. Guo, L. Hao, H. Wei, A new method for calculating time to maximum rate under adiabatic condition, CIESC J. 67(2016) 22-27(in Chinese). [23] J. Jiang, W. Jiang, L. Ni, The modified Stoessel criticality diagram for process safety assessment, Proc. Saf. Environ. Prot. 129(2019) 112-118. |