中国化学工程学报 ›› 2020, Vol. 28 ›› Issue (11): 2723-2732.DOI: 10.1016/j.cjche.2020.06.024
Xin Dai1,2, Jin Bai3, Ping Yuan4, Shiyu Du5, Dongtao Li1,2, Xiaodong Wen3, Wen Li3
收稿日期:
2020-05-21
修回日期:
2020-06-11
出版日期:
2020-11-28
发布日期:
2020-12-31
通讯作者:
Jin Bai, Shiyu Du
基金资助:
Xin Dai1,2, Jin Bai3, Ping Yuan4, Shiyu Du5, Dongtao Li1,2, Xiaodong Wen3, Wen Li3
Received:
2020-05-21
Revised:
2020-06-11
Online:
2020-11-28
Published:
2020-12-31
Contact:
Jin Bai, Shiyu Du
Supported by:
摘要: One of the crucial issues in modern ash chemistry is the realization of efficient and clean coal conversion. Industrially, large-scale coal gasification technology is well known as the foundation to improve the atom economy. In practice, the coal ash fusibility is a critical factor to determine steady operation standards of the gasifier, which is also the significant criterion to coal species selection for gasification. Since coal behaviors are resultant from various evolutions in different scales, the multi-scale understanding of the ash chemistry is of significance to guide the fusibility adjustment for coal gasification. Considering important roles of molecular simulation in exploring ash chemistry, this paper reviews the recent studies and developments on modeling of molecular systems for fusibility related ash chemistry for the first time. The discussions are emphasized on those performed by quantum mechanics and molecular mechanics, the two major simulation methods for microscopic systems, which may provide various insights into fusibility mechanism. This review article is expected to present comprehensive information for recent molecular simulations of coal chemistry so that new clues to find strategies controlling the ash fusion behavior can be obtained.
Xin Dai, Jin Bai, Ping Yuan, Shiyu Du, Dongtao Li, Xiaodong Wen, Wen Li. The application of molecular simulation in ash chemistry of coal[J]. 中国化学工程学报, 2020, 28(11): 2723-2732.
Xin Dai, Jin Bai, Ping Yuan, Shiyu Du, Dongtao Li, Xiaodong Wen, Wen Li. The application of molecular simulation in ash chemistry of coal[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2723-2732.
[1] X. Dai, J. Bai, Q. Huang, Z. Liu, X. Bai, C.-T. Lin, W. Li, W. Guo, X. Wen, S. Du, Coal ash fusion properties from molecular dynamics simulation:The role of calcium oxide, Fuel 216(2018) 760-767. [2] C. Higman, S. Tam, Hydrogenation, and gas treating for the production of chemicals and fuels, chemical reviews, Chem. Rev. 114(2014) 1673-1708. [3] J.H. Patterson, H.J. Hurst, Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers, Fuel 79(2000) 1671-1678. [4] BP Statistical Review of World Energy 2017, In, BP Public Limited Company, London, 2017. [5] W. Song, L. Tang, X. Zhu, Y. Wu, Y. Rong, Z. Zhu, S. Koyama, Fusibility and flow properties of coal ash and slag, Fuel 88(2009) 297-304. [6] S.A. Benson, E.A. Sondreal, J.P. Hurley, Status of coal ash behavior research, Fuel Process. Technol. 44(1995) 1-12. [7] L. Kong, J. Bai, Z. Bai, Z. Guo, W. Li, Effects of CaCO3 on slag flow properties at high temperatures, Fuel 109(2013) 76-85. [8] S.K. Gupta, T.F. Wall, R.A. Creelman, R.P. Gupta, Ash fusion temperatures and the transformations of coal ash particles to slag, Fuel Process. Technol. 56(1998) 33-43. [9] W. Song, L. Tang, X. Zhu, Y. Wu, Z. Zhu, S. Koyama, Flow properties and rheology of slag from coal gasification, Fuel 89(2010) 1709-1715. [10] W. Song, Y. Sun, Y. Wu, Z. Zhu, S. Koyama, Measurement and simulation of flow properties of coal ash slag in coal gasification, AIChE J. 57(2011) 801-818. [11] W. Song, L. Tang, Z. Zhu, Y. Ninomiya, Rheological evolution and crystallization response of molten coal ash slag at high temperatures, AIChE J. 59(2013) 2726-2742. [12] S.V. Vassilev, K. Kitanob, S. Takedab, T. Tsurueb, Influence of mineral and chemical composition of coal ashes on their fusibility, Fuel Process. Technol. 45(1995) 27-51. [13] S.V. Vassilev, J.M.D. Tascon, Methods for characterization of inorganic and mineral matter in coal:A critical overview, Energy Fuel 17(2003) 271-281. [14] S.K. Gupta, R.P. Gupta, G.W. Bryant, T.F. Wall, The effect of potassium on the fusibility of coal ashes with high silica and alumina levels, Fuel 77(1998) 1195-1201. [15] L.X. Kong, J. Bai, Z.Q. Bai, Z.X. Guo, W. Li, Improvement of ash flow properties of low-rank coal for entrained flow gasifier, Fuel 120(2014) 122-129. [16] L. Kong, J. Bai, W. Li, X. Wen, X. Li, Z. Bai, Z. Guo, H. Li, The internal and external factor on coal ash slag viscosity at high temperatures, part 3:Effect of CaO on the pattern of viscosity-temperature curves of slag, Fuel 179(2016) 10-16. [17] X. Chen, L. Kong, J. Bai, X. Dai, H. Li, Z. Bai, W. Li, The key for sodium-rich coal utilization in entrained flow gasifier:The role of sodium on slag viscositytemperature behavior at high temperatures, Appl. Energy 206(2017) 1241-1249. [18] H.J. Hurst, F. Novak, J.H. Patterson, Viscosity measurements and empirical predictions for some model gasifier slags, Fuel 78(1999) 439-444. [19] D.P. Plandau, K.K. Mon, H.B. Schuttler, Computer Simulation Studies in Condensed Matter Physics Ⅱ, Recent Developments Proceeding of the Workshop, Athens, GA, USA, 198912-20. [20] Y Hu, H.L. Liu, Molecular engineering and chemical engineering, Processing Chemistry 7(1995) 235-249. [21] J.J. de Pablo, F.A. Escobedo, Molecular simulations in chemical engineering:Present and future, AIChE J. 48(2002) 801-818. [22] Y. Zhang, E.J. Maginn, Toward fully in Silico melting point prediction using molecular simulations, J. Chem. Theory Comput. 9(2013) 1592-1599. [23] E.J. Maginn, From discovery to data:What must happen for molecular simulation to become a mainstream chemical engineering tool, AIChE J. 55(2009) 2716-2721. [24] Y. Kim, H. Park, Estimation of TiO2-FeO-Na2O slag viscosity through molecular dynamics simulations for an energy efficient ilmenite smelting process, Sci. Rep. 9(2019) 1-12. [25] Y.G. Li, J.C. Liu, Molecular simulation in chemical engineering, Modern Chemical Industry 21(2001) 10-15. [26] A.C. Fieldner, W.A. Selvig, W.L. Parker, Comparison of the standard gas furnace and micropyrometer methods for determining the fusibility of coal ash, Journal of Industrial and Engineering Chemistry-US 14(1922) 695-698. [27] A.C. Fieldner, W.A. Selvig, Relation of ash composition to the uses of coal, Transactions of the American Institute of Mining and Metallurgical Engineers 74(1927) 456-468. [28] T.G. Yan, J. Bai, L.X. Kong, Z.Q. Bai, W. Li, J. Xu, Effect of SiO2/Al2O3 on fusion behavior of coal ash at high temperature, Fuel 193(2017) 275-283. [29] W.J. Song, L.H. Tang, X.D. Zhu, Y.Q. Wu, Z.B. Zhu, S. Koyama, Effect of coal ash composition on ash fusion temperatures, Energy Fuel 24(2010) 182-189. [30] B. Liu, Q. He, Z. Jiang, R. Xu, B. Hu, Relationship between coal ash composition and ash fusion temperatures, Fuel 105(2013) 293-300. [31] T.F. Wall, R.A. Creelman, R.P. Gupta, S.K. Gupta, C. Coin, A. Lowe, Coal ash fusion temperatures-new characterization techniques, and implications for slagging and fouling, Prog. Energy Combust. Sci. 24(1998) 345-353. [32] S.A. Lolja, H. Haxhi, R. Dhimitri, S. Drushku, A. Malja, Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes, Fuel 81(2002) 2257-2261. [33]. Standardization Administration of the People's Republic of China, Determination of Fusibility of Coal Ash. GB/T219-2008, Standards Press of China, Beijing, 2008. [34] G.W. Bryant, J.A. Lucas, S.K. Gupta, T.F. Wall, Use of thermomechanical analysis to quantify the flux additions necessary for slag flow in slagging gasifiers fired with coal, Energy Fuel 12(1998) 257-261. [35] S.K.G. Gupta, R.P. Bryant, G.W. Juniper, T.F. L Wall, Thermomechanical Analysis and Alternative Ash Fusibility Temperatures, Kluwer Academic Plenum Publishers, New York, 1999. [36] T. Yan, L. Kong, J. Bai, Z. Bai, W. Li, Thermomechanical analysis of coal ash fusion behavior, Chem. Eng. Sci. 147(2016) 74-82. [37] J. Bai, W. Li, Z. Bai, Effects of mineral matter and coal blending on gasification, Energy Fuel 25(2011) 1127-1131. [38] J. Bai, W. Li, B.Q. Li, Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere, Fuel 87(2008) 583-591. [39] H. Yuan, Q. Liang, X. Gong, Crystallization of coal ash slags at high temperatures and effects on the viscosity, Energy Fuel 26(2012) 3717-3722. [40] J. Xu, X. Liu, F. Zhao, F.C. Wang, Q.H. Guo, G.S. Yu, Study on fusibility and flow behavior of high-calcium coal ash, Journal of Chemical Engineering of Japan 47(2014) 711-716. [41] S. Chakravarty, A. Mohanty, A. Banerjee, R. Tripathy, G.K. Mandal, M.R. Basariya, M. Sharma, Composition, mineral matter characteristics and ash fusion behavior of some Indian coals, Fuel 150(2015) 96-101. [42] W.W. Xuan, K.J. Whitty, Q.L. Guan, D.P. Bi, Z.H. Zhan, J.S. Zhang, Influence of SiO2/Al2O3 on crystallization characteristics of synthetic coal slags, Fuel 144(2015) 103-110. [43] J. Bai, W. Li, C.Z. Li, Z.Q. Bai, B.Q. Li, Influences of minerals transformation on the reactivity of high temperature char gasification, Fuel Process. Technol. 91(2010) 404-409. [44] L. Kong, J. Bai, Z. Bai, Z. Guo, W. Li, Effects of CaCO3 on slag flow properties at high temperatures, Fuel 109(2013) 76-85. [45] H.J. Hurst, F. Novak, J.H. Patterson, Phase diagram approach to the fluxing effect of additions of CaCO3 on Australian coal ashes, Energy Fuel 10(1996) 1215-1219. [46] E. Jaka, S. Degterovb, P.C. Hayesa, A.D. Peltonb, Thermodynamic modelling of the system Al2O3-SiO2-CaO-FeO-Fe2O3 to predict the flux requirements for coal ash slags, Fuel 77(1998) 77-84. [47] C. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melancon, A.D. Pelton, S. Petersen, FactSage thermochemical software and databases, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry 26(2002) 189-228. [48] C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, C. Robelin, S. Petersen, FactSage thermochemical software and databases-recent developments, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry 33(2009) 295-311. [49] C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I. H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.A. Van Ende, FactSage thermochemical software and databases, 2010-2016, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry 54(2016) 35-53. [50] W.J. Song, L.H. Tang, X.D. Zhu, Y.Q. Wu, Z.B. Zhu, S. Koyama, Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres, Energy Fuel 23(2009) 1990-1997. [51] L. Kong, J. Bai, W. Li, X. Wen, X. Liu, X. Li, Z. Bai, Z. Guo, H. Li, The internal and external factor on coal ash slag viscosity at high temperatures, part 2:Effect of residual carbon on slag viscosity, Fuel 158(2015) 976-982. [52] A.Y. Ilyushechkin, S.S. Hla, D.G. Roberts, N.N. Kinaev, The effect of solids and phase compositions on viscosity behaviour and T-CV of slags from Australian bituminous coals, J. Non-Cryst. Solids 357(2011) 893-902. [53] W.W. Xuan, K.J. Whitty, Q.L. Guan, D.P. Bi, J.S. Zhang, Influence of isothermal temperature and cooling rates on crystallization characteristics of a synthetic coal slag, Fuel 137(2014) 193-199. [54] W.W. Xuan, K.J. Whitty, Q.L. Guan, D.P. Bi, Z.H. Zhan, J.S. Zhang, Influence of CaO on crystallization characteristics of synthetic coal slags, Energy Fuel 28(2014) 6627-6634. [55] W.W. Xuan, K.J. Whitty, Q.L. Guan, D.P. Bi, Z.H. Zhan, J.S. Zhang, Influence of Fe2O3 and atmosphere on crystallization characteristics of synthetic coal slags, Energy Fuel 29(2015) 405-412. [56] W. Xuan, J. Zhang, D. Xia, Crystallization characteristics of a coal slag and influence of crystals on the sharp increase of viscosity, Fuel 176(2016) 102-109. [57] W.W. Xuan, Q. Wang, J.S. Zhang, D.H. Xia, Influence of silica and alumina (SiO2+Al2O3) on crystallization characteristics of synthetic coal slags, Fuel 189(2017) 39-45. [58] B. Ding, X. Zhu, H. Wang, X.Y. He, Y. Tan, Numerical investigation on phase change cooling and crystallization of a molten blast furnace slag droplet, Int. J. Heat Mass Transf. 118(2018) 471-479. [59] H. Maekawa, T. Maekawa, K. Kawamura, T. Yokokawa, The structural groups of alkali silicate-glasses determined form Si-29 MAS-NMR, J. Non-Cryst. Solids 127(1991) 53-64. [60] P. Zhang, P.J. Grandinetti, J.F. Stebbins, Anionic species determination in CaSiO3 glass using two-dimensional Si-29 NMR, J. Phys. Chem. B 101(1997) 4004-4008. [61] M. Paris, The two aluminum sites in the Al-27 MAS NMR spectrum of kaolinite:Accurate determination of isotropic chemical shifts and quadrupolar interaction parameters, Am. Mineral. 99(2014) 393-400. [62] B.W. Veal, D.J. Lam, A.P. Paulikas, W.Y. Ching, XPS study of CaO in sodium-silicate glass, J. Non-Cryst. Solids 49(1982) 309-320. [63] J.H. Park, Structure-property relationship of CaO-MgO-SiO2 slag:Quantitative analysis of Raman spectra, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 44(2013) 938-947. [64] S.H. Shin, J.W. Cho, S.H. Kim, Structural investigations of CaO-CaF2-SiO2-Si3N4 based glasses by Raman spectroscopy and XPS considering its application to continuous casting of steels, Mater. Des. 76(2015) 1-8. [65] Z. Ma, J. Bai, X. Wen, X. Li, Y. Shi, Z. Bai, L. Kong, Z. Guo, J. Yan, W. Li, Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures part 3:Carbon thermal reaction, Energy Fuel 28(2014) 3066-3073. [66] H.J. Hurst, F. Novak, J.H. Patterson, Viscosity measurements and empirical predictions for some model gasifier slags, Fuel 78(1999) 439-444. [67] H.J. Hurst, J.H. Patterson, A. Quintanar, Viscosity measurements and empirical predictions for some model gasifier slags-Ⅱ, Fuel 79(2000) 1797-1799. [68] J.C.V. Dyka, F.B. Waanders, S.A. Benson, M.L. Laumb, K. Hack, Viscosity predictions of the slag composition of gasified coal, utilizing FactSage equilibrium modelling, Fuel 88(2009) 67-74. [69] G.J. Browning, G.W. Bryant, H.J. Hurst, J.A. Lucas, T.F. Wall, An empirical method for the prediction of coal ash slag viscosity, Energy Fuel 17(2003) 731-737. [70] L.X. Kong, J. Bai, W. Li, X.D. Wen, X.M. Li, Z.Q. Bai, Z.X. Guo, H.Z. Li, The internal and external factor on coal ash slag viscosity at high temperatures, part 1:Effect of cooling rate on slag viscosity, measured continuously, Fuel 158(2015) 968-975. [71] L. Kong, J. Bai, W. Li, X. Wen, X. Li, Z. Bai, Z. Guo, H. Li, The internal and external factor on coal ash slag viscosity at high temperatures, part 1:Effect of cooling rate on slag viscosity, measured continuously, Fuel 158(2015) 968-975. [72] H.W. Nesbitt, G.M. Bancroft, G.S. Henderson, R. Ho, K.N. Dalby, Y. Huang, Z. Yan, Bridging, non-bridging and free (O2-) oxygen in Na2O-SiO2 glasses:An X-ray photoelectron spectroscopic (XPS) and nuclear magnetic resonance (NMR) study, J. Non-Cryst. Solids 357(2011) 170-180. [73] J. Hafner, Ab-initio simulations of materials using VASP:Density-functional theory and beyond, J. Comput. Chem. 29(2008) 2044-2078. [74] A. Abbas, J.M. Delaye, D. Ghaleb, G. Calas, Molecular dynamics study of the structure and dynamic behavior at the surface of a silicate glass, J. Non-Cryst. Solids 315(2003) 187-196. [75] P.M. Agrawal, L.M. Raff, M.T. Hagan, R. Komanduri, Molecular dynamics investigations of the dissociation of SiO2 on an ab initio potential energy surface obtained using neural network methods, J. Chem. Phys. 124(2006) 134306. [76] L. Barbieri, V. Cannillo, C. Leonelli, M. Montorsi, P. Mustarelli, C. Siligardi, Experimental and MD simulations study of CaO-ZrO2-SiO2 glasses, J. Phys. Chem. B 107(2003) 6519-6525. [77] A. Slepoy, A.P. Thompson, S.J. Plimpton, A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks, J. Chem. Phys. 128(2008) 205101. [78] J.K. Brennan, M. Lísal, J.D. Moore, S. Izvekov, I.V. Schweigert, J.P. Larentzos, Coarsegrain model simulations of nonequilibrium dynamics in heterogeneous materials, J. Phys. Chem. Lett. 5(2014) 2144-2149. [79] X. Dai, J. He, J. Bai, Q. Huang, X. Wen, L. Xie, K. Luo, J. Zhang, W. Li, S. Du, Ash fusion properties from molecular dynamics simulation:Role of the ratio of silicon and aluminum, Energy Fuel 30(2016) 2407-2413. [80] X. Dai, J. Bai, Q. Huang, Z. Liu, X. Bai, R. Cao, X. Wen, W. Li, S. Du, Viscosity temperature properties from molecular dynamics simulation:The role of calcium oxide, sodium oxide and ferrous oxide, Fuel 237(2019) 163-169. [81] C. Ma, N. Skoglund, M. Carlborg, M. Brostrom, Viscosity of molten CaO-K2O-SiO2 woody biomass ash slags in relation to structural characteristics form molecular dynamics simulation, Chem Eng Sci 215(2020), 115464. [82] H.H. Liu, M.F. Du, Y.K. Wang, M.Q. Li, Characteristics and mechanism on coal ash fusion, J. Mater. Sci. Eng. 176(2018) 985-992. [83] Z.L. Yang, M.F. Du, Y.L. Chen, R.L. Li, L.X. Xu, M.Q. Li, Quantum chemistry study of doping kaolin in coal ash, J. Mater. Sci. Eng. 174(2018) 568-572. [84] C.L. Wu, B.B. Wang, J.Q. Zheng, H.X. Li, Flux mechanism of compound flux on ash and slag of coal with high ash melting temperature, Chin. J. Chem. Eng. 27(2019) 1200-1206. [85] M.Q. Li, J.J. Fan, Z.X. Zhang, X.J. Wu, Quantum chemistry study of doping kaolin in coal ash, Journal of Combustion Science &Technology 23(2017) 429-435. [86] X. Wu, Z. Zhang, Y. Chen, T. Zhou, J. Fan, G. Piao, N. Kobayashi, S. Mori, Y. Itaya, Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition, Fuel Process. Technol. 91(2010) 1591-1600. [87] L.S.I. Liyanage, S.-G. Kim, J. Houze, S. Kim, M.A. Tschopp, M.I. Baskes, M.F. Horstemeyer, structural, elastic, and thermal properties of cementite FeC 094102. calculated using a modified embedded atom method, Phys. Rev. B 89(2014). [88] H. Feng, J. Zhou, Y. Qian, Atomistic simulations of the solid-liquid transition of 1-ethyl-3-methyl imidazolium bromide ionic liquid, J. Chem. Phys. 135(2011) 144501. [89] J. Li, M.F. Du, Z.X. Zhang, R.Q. Guan, Y.S. Chen, T.Y. Liu, Selection of fluxing agent for coal ash and investigation of fusion mechanism:A first-principle study, Energy Fuel 23(2009) 704-709. [90] M.Q. Li, Z.X. Zhang, X.J. Wu, J.J. Fan, Experiment and mechanism study on the effect of kaolin on melting characteristics of Zhundong coal ash, Energy Fuel 30(2016) 7763-7769. [91] D. Beeman, Some multistep methods for use in molecular dynamics calculations, J. Comput. Phys. 20(1976) 130-139. [92] M. Matsui, Molecular dynamics simulation of structures, bulk moduli, and volume thermal expansivities of silicate liquids in the system CaO-MgO-Al2O3-SiO2, Geophys. Res. Lett. 23(1996) 395-398. [93] B.W.M. Thomas, R.N. Mead, G. Mountjoy, A molecular dynamics study of the atomic structure of (CaO)x(Al2O3)1-x glass with x=0.625 close to the eutectic, J. Phys. Condens. Matter 18(2006) 4697-4708. [94] B. Schatschneider, E.L. Chronister, Molecular dynamics simulations of temperatureand pressure-induced solid-solid phase transitions in crystallinepara-terphenyl, Mol. Simul. 34(2008) 1159-1166. [95] O. Adjaoud, G. Steinle-Neumann, S. Jahn, Mg2SiO4 liquid under high pressure from molecular dynamics, Chem. Geol. 256(2008) 185-192. [96] X. Lu, Y. Hu, Molecular Thermodynamics of Complex Systems, Springer, 2008. [97] G.F. Velardez, S. Alavi, D.L. Thompson, Molecular dynamics studies of melting and solid-state transitions of ammonium nitrate, J. Chem. Phys. 120(2004) 9151-9159. [98] S.N. Luo, A. Strachan, D.C. Swift, Nonequilibrium melting and crystallization of a model Lennard-Jones system, J. Chem. Phys. 120(2004) 11640-11649. [99] J. Solca, A.J. Dyson, G. Steinebrunner, B. Kirchner, H. Huber, Melting curve for argon calculated from pure theory, Chem. Phys. 224(1997) 253-261. [100] J. Solca, A.J. Dyson, G. Steinebrunner, B. Kirchner, H. Huber, Melting curves for neon calculated from pure theory, J. Chem. Phys. 108(1998) 4107-4111. [101] P.M. Agrawal, B.M. Rice, D.L. Thompson, Molecular dynamics study of the effects of voids and pressure in defect-nucleated melting simulations, J. Chem. Phys. 118(2003) 9680. [102] P.M. Agrawal, B.M. Rice, D.L. Thompson, Molecular dynamics study of the melting of nitromethane, J. Chem. Phys. 119(2003) 9617. [103] D.M. Eike, E.J. Maginn, Atomistic simulation of solid-liquid coexistence for molecular systems:Application to triazole and benzene, J. Chem. Phys. 124(2006) 164503. [104] D.J. Evans, G.P. Morriss, Nonlinear-response Theroy for steady planar Couette-flow, Phys. Rev. A 30(1984) 1528-1530. [105] F. Muller-Plathe, Reversing the perturbation in nonequilibrium molecular dynamics:An easy way to calculate the shear viscosity of fluids, Phys. Rev. E 59(1999) 4894-4898. [106] P.J. Daivis, B.D. Todd, A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalized homogeneous flows, J. Chem. Phys. 124(2006) 194103. [107] M.S. Kelkar, J.L. Rafferty, E.J. Maginn, J.I. Siepmann, Prediction of viscosities and vapor-liquid equilibria for five polyhydric alcohols by molecular simulation, Fluid Phase Equilib. 260(2007) 218-231. [108] L.M. Thompson, J.F. Stebbins, Interaction between composition and temperature effects on non-bridging oxygen and high-coordinated aluminum in calcium aluminosilicate glasses, Am. Mineral. 98(2013) 1980-1987. [109] A.P. Thompson, S.J. Plimpton, W. Mattson, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, J. Chem. Phys. 131(2009) 154107. [110] P.J. Daivis, D.J. Evans, Comparison of constant-pressure and constant volume nonequilibrium simulation of sheared model Decane, J. Chem. Phys. 100(1994) 541-547. [111] M. Schoen, C. Hoheisel, The shear viscosity of a lennard-jones fluid calculated by equilibrium molecular dynamics, Mol. Phys. 56(1985) 653-672. [112] M. Cappelezzo, C.A. Capellari, S.H. Pezzin, L.A.F. Coelho, Stokes-Einstein relation for pure simple fluids, J. Chem. Phys. 126(2007) 46. [113] S.V. Lishchuk, Role of three-body interactions in formation of bulk viscosity in liquid argon, J. Chem. Phys. 136(2012) 164501. [114] J.Y. Dai, Y. Hou, D.D. Kang, H.Y. Sun, J.H. Wu, J.M. Yuan, Structure, equation of state, diffusion and viscosity of warm dense Fe under the conditions of a giant planet core, New J. Phys. 15(2013) 045003. [115] M.E. Trybula, Structure and transport properties of the liquid Al80Cu20 alloy-a molecular dynamics study, Comput. Mater. Sci. 122(2016) 341-352. [116] P. Bordat, F. Muller-Plathe, The shear viscosity of molecular fluids:A calculation by reverse nonequilibrium molecular dynamics, J. Chem. Phys. 116(2002) 3362-3369. [117] N. Jakse, M. Bouhadja, J. Kozaily, J.W.E. Drewitt, L. Hennet, D.R. Neuville, H.E. Fischer, V. Cristiglio, A. Pasturel, Interplay between non-bridging oxygen, triclusters, and fivefold Al coordination in low silica content calcium aluminosilicate melts, Appl. Phys. Lett. 101(2012) 201903. [118] K. Li, R. Khanna, M. Bouhadja, J. Zhang, Z. Liu, B. Su, T. Yang, V. Sahajwalla, C.V. Singh, A molecular dynamic simulation on the factors influencing the fluidity of molten coke ash during alkalization with K2O and Na2O, Chem. Eng. J. 313(2017) 1184-1193. [119] K.Z.Z.Z.F.Y.S. Sridhar, Molecular Dynamics Study of the Structural Properties of Calcium Aluminosilicate Slags with Varying Al2O3/SiO2 Ratios, ISIJ International 52(2012) 8. [120] M. Bouhadja, N. Jakse, A. Pasturel, Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers, J. Chem. Phys. 140(2014) 234507. [121] L. Zhang, J.A. Van Orman, D.J. Lacks, Molecular dynamics investigation of MgO-CaO-SiO2 liquids:Influence of pressure and composition on density and transport properties, Chem. Geol. 275(2010) 50-57. [122] K. Li, R. Khanna, M. Bouhadja, J. Zhang, Z. Liu, B. Su, T. Yang, V. Sahajwall, C.V. Singh, M. Barati, A molecular dynamic simulation on the factors influencing the fluidity of molten coke ash during alkalization with K2O and Na2O, Chem. Eng. J. 313(2017) 1184-1193. [123] T. Wu, Q. Wang, T. Yao, S. He, Molecular dynamics simulations of the structural properties of Al2O3-based binary systems, J. Non-Cryst. Solids 435(2016) 17-26. [124] T. Wu, Q. Wang, C.F. Yu, S.P. He, Structural and viscosity properties of CaO-SiO2-Al2O3-FeO slags based on molecular dynamic simulation, J. Non-Cryst. Solids 450(2016) 23-31. [125] F.G. Fumi, M.P. Tosi, Ionic sizes born repulsive parameters in NaCl-type alkali halide I.Huggins-Mayer and pauling forms, J. Phys. Chem. Solids 25(1964) 31-42. [126] M.P. Tosi, F.G. Fumi, Ionic sizes born repulsive parameters in NaCl-type alkali halide Ⅱ.Generalized, J. Phys. Chem. Solids 25(1964) 45-52. [127] P.M. Morse, Diatomic molecules according to the wave mechanics I:Electronic levels of the hydrogen molecular ion, Phys. Rev. 33(1929) 0932-0947. [128] K. Zheng, Z. Zheng, F. Yang, S. Sridhar, Molecular dynamics study of the structural properties of calcium aluminosilicate slags with varying Al2O3/SiO2 ratios, ISIJ Int. 52(2012) 342-349. [129] M. Bouhadja, N. Jakse, A. Pasturel, Stokes-Einstein violation and fragility in calcium aluminosilicate glass formers:A molecular dynamics study, Mol. Simul. 40(2014) 251-259. [130] J.M. Delaye, L. Cormier, D. Ghaleb, G. Calas, Investigation of multicomponent silicate glasses by coupling WAXS and molecular dynamics, J. Non-Cryst. Solids 293(2001) 290-296. [131] T. Wu, S.P. He, Y.J. Liang, Q. Wang, Molecular dynamics simulation of the structure and properties for the CaO-SiO2 and CaO-Al2O3 systems, J. Non-Cryst. Solids 411(2015) 145-151. [132]. K. Li, M. Bouhadja, R. Khanna, J. Zhang, Z. Liu, Y. Zhang, T. Yang, V. Sahajwalla, Y. Yang, M. Barati, Influence of SiO2 reduction on the local structural order and fluidity of molten coke ash in the high temperature zone of a blast furnace. A molecular dynamics simulation investigation, Fuel 186(2016) 561-570. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||