[1] J.B. Joshi, N.K. Nere, C.V. Rane, B.N. Murthy, C.S. Mathpati, A.W. Patwardhan, V.V. Ranade, CFD simulation of stirred tanks:Comparison of turbulence models. Part I:radial flow impellers, Can. J. Chem. Eng. 89(1) (2011) 23-82. [2] V.V. Ranade, Y. Tayalia, H. Krishnan, CFD predictions of flow near impeller blades in baffled stirred vessels:assessment of computational snapshot approach, Chem. Eng. Commun. 189(7) (2002) 895-922. [3] A. Ochieng, M.S. Onyango, Drag models, solids concentration and velocity distribution in a stirred tank, Powder Technol. 181(1) (2008) 1-8. [4] G. Montante, F. Magelli, Mixed solids distribution in stirred vessels:experiments and computational fluid dynamics simulations, Ind. Eng. Chem. Res. 46(9) (2007) 2885-2891. [5] A.R. Khopkar, G.R. Kasat, A.B. Pandit, V.V. Ranade, Computational fluid dynamics simulation of the solid suspension in a stirred slurry reactor, Ind. Eng. Chem. Res. 45(12) (2006) 4416-4428. [6] M. Ljungqvist, A. Rasmuson, Numerical simulation of the two-phase flow in an axially stirred vessel, Chem. Eng. Res. Des. 79(5) (2001) 533-546. [7] R. Clift, W.H. Gauvin, Motion of entrained particles in gas streams, Can. J. Chem. Eng. 49(4) (1971) 439-448. [8] A. Bakker, H.E.A. Van den Akker, Single-phase flow in stirred reactors, Chem. Eng. Res. Des. 72(A4) (1994) 583-593. [9] A. Brucato, F. Grisafi, G. Montante, Particle drag coefficients in turbulent fluids, Chem. Eng. Sci. 53(18) (1998) 3295-3314. [10] D. Pinelli, G. Montante, F. Magelli, Dispersion coefficients and settling velocities of solids in slurry vessels stirred with different types of multiple impellers, Chem. Eng. Sci. 59(15) (2004) 3081-3089. [11] G.L. Lane, M.P. Schwarz, G.M. Evans, Numerical modelling of gas-liquid flow in stirred tanks, Chem. Eng. Sci. 60(8-9 SPEC. ISS) (2005) 2203-2214. [12] A.R. Khopkar, V.V. Ranade, CFD simulation of gas-liquid stirred vessel:VC, S33, and L33 flow regimes, AIChE J 52(5) (2006) 1654-1672. [13] J.B. Joshi, N.K. Nere, C.V. Rane, B.N. Murthy, C.S. Mathpati, A.W. Patwardhan, V.V. Ranade, CFD simulation of stirred tanks:comparison of turbulence models (part Ⅱ:axial flow impellers, multiple impellers and multiphase dispersions), Can. J. Chem. Eng. 89(4) (2011) 754-816. [14] J.J. Derksen, Long-time solids suspension simulations by means of a large-eddy approach, Chem. Eng. Res. Des. 84(1 A) (2006) 38-46. [15] J.J. Derksen, Numerical simulation of solids suspension in a stirred tank, AIChE J 49(11) (2003) 2700-2714. [16] F. Sbrizzai, V. Lavezzo, R. Verzicco, M. Campolo, A. Soldati, Direct numerical simulation of turbulent particle dispersion in an unbaffled stirred-tank reactor, Chem. Eng. Sci. 61(9) (2006) 2843-2851. [17] A.D. Gosman, C. Lekakou, S. Politis, R.I. Issa, M.K. Looney, Multidimensional modeling of turbulent two-phase flows in stirred vessels, AIChE J 38(12) (1992) 1946-1956. [18] G.L. Lane, M.P. Schwarz, G.M. Evans, Predicting gas-liquid flow in a mechanically stirred tank, Appl. Math. Model. 26(2) (2002) 223-235. [19] N.G. Deen, T. Solberg, B.H. Hjertager, Flow generated by an aerated Rushton impeller:two-phase PIV experiments and numerical simulations, Can. J. Chem. Eng. 80(4) (2002) 638-652. [20] A.R. Khopkar, J. Aubin, C. Xuereb, N. Le Sauze, J. Bertrand, V.V. Ranade, Gas-liquid flow generated by a pitched-blade turbine:particle image velocimetry measurements and computational fluid dynamics simulations, Ind. Eng. Chem. Res. 42(21) (2003) 5318-5332. [21] A.R. Khopkar, A.R. Rammohan, V.V. Ranade, M.P. Dudukovic, Gas-liquid flow generated by a Rushton turbine in stirred vessel:CARPT/CT measurements and CFD simulations, Chem. Eng. Sci. 60(8-9) (2005) 2215-2229. [22] F. Kerdouss, A. Bannari, P. Proulx, CFD modeling of gas dispersion and bubble size in a double turbine stirred tank, Chem. Eng. Sci. 61(10) (2006) 3313-3322. [23] B.N. Murthy, N.A. Deshmukh, A.W. Patwardhan, J.B. Joshi, Hollow self-inducing impellers:flow visualization and CFD simulation, Chem. Eng. Sci. 62(14) (2007) 3839-3848. [24] F. Scargiali, A. D'Orazio, F. Grisafi, A. Brucato, Modelling and simulation of gas-liquid hydrodynamics in mechanically stirred tanks, Chem. Eng. Res. Des. 85(5 A) (2007) 637-646. [25] G. Montante, D. Horn, A. Paglianti, Gas-liquid flow and bubble size distribution in stirred tanks, Chem. Eng. Sci. 63(8) (2008) 2107-2118. [26] J. Gimbun, C.D. Rielly, Z.K. Nagy, Modelling of mass transfer in gas-liquid stirred tanks agitated by Rushton turbine and CD-6 impeller:A scale-up study, Chem. Eng. Res. Des. 87(4) (2009) 437-451. [27] M. Jahoda, L. Tomášková, M. Moštěk, CFD prediction of liquid homogenisation in a gas-liquid stirred tank, Chem. Eng. Res. Des. 87(4) (2009) 460-467. [28] Q. Zhang, Y. Yong, Z.-S. Mao, C. Yang, C. Zhao, Experimental determination and numerical simulation of mixing time in a gas-liquid stirred tank, Chem. Eng. Sci. 64(12) (2009) 2926-2933. [29] Y.H. Zhang, Y.M. Yong, Z.S. Mao, C. Yang, H.Y. Sun, H.L. Wang, Numerical simulation of gas-liquid flow in a stirred tank with swirl modification, Chem. Eng. Technol. 32(8) (2009) 1266-1273. [30] Q. Zhang, C. Yang, Z.-S. Mao, J. Mu, Large Eddy simulation of turbulent flow and mixing time in a gas-liquid stirred tank, Ind. Eng. Chem. Res. 51(30) (2012) 10124-10131. [31] M. Petitti, M. Vanni, D.L. Marchisio, A. Buffo, F. Podenzani, Simulation of coalescence, break-up and mass transfer in a gas-liquid stirred tank with CQMOM, Chem. Eng. J. 228(2013) 1182-1194. [32] Y. Zhang, Y. Bai, H. Wang, CFD analysis of inter-phase forces in a bubble stirred vessel, Chem. Eng. Res. Des. 91(1) (2013) 29-35. [33] H. Wang, X. Jia, X. Wang, Z. Zhou, J. Wen, J. Zhang, CFD modeling of hydrodynamic characteristics of a gas-liquid two-phase stirred tank, Appl. Math. Model. 38(1) (2014) 63-92. [34] Y. Bao, B. Wang, M. Lin, Z. Gao, J. Yang, Influence of impeller diameter on overall gas dispersion properties in a sparged multi-impeller stirred tank, Chin. J. Chem. Eng. 23(6) (2015) 890-896. [35] Y. Bao, J. Yang, B. Wang, Z. Gao, Influence of impeller diameter on local gas dispersion properties in a sparged multi-impeller stirred tank, Chin. J. Chem. Eng. 23(4) (2015) 615-622. [36] N.T.A. Othman, M.P. Ngaliman, CFD simulation of gas-liquid in an agitated vessel, Indian J. Sci. Technol. 9(21) (2016) 1-6. [37] J. Sarkar, L.K. Shekhawat, V. Loomba, A.S. Rathore, CFD of mixing of multi-phase flow in a bioreactor using population balance model, Biotechnol. Prog. 32(3) (2016) 613-628. [38] P. Shi, R. Rzehak, Bubbly flow in stirred tanks:Euler-Euler/RANS modeling, Chem. Eng. Sci. 190(2018) 419-435. [39] A. Heidari, CFD simulation of operational parameters effects on mixing quality of twophase gas-liquid flow in agitated vessel, Modares Mechanical Eng. 18(8) (2018) 9-18. [40] X. Guan, X. Li, N. Yang, M. Liu, CFD simulation of gas-liquid flow in stirred tanks:effect of drag models, Chem. Eng. J. 386(2020), 121554.. [41] W.-M. Lu, S.-J. Ju, Local gas holdup, mean liquid velocity and turbulence in an aerated stirred tank using hot-film anemometry, Chem. Eng. J. 35(1) (1987) 9-17. [42] J.O. Hinze, Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE J 1(3) (1955) 289-295. [43] W. Chtourou, M. Ammar, Z. Driss, M.S. Abid, Effect of the turbulence models on Rushton turbine generated flow in a stirred vessel, Cent. Eur. J. Eng. 1(4) (2011) 380-389. [44] F. Scargiali, Gas-Liquid Dispersions in Mechanically Agitated Contactors, PhD Thesis, University of Palermo, Palermo, Italy, 2006. [45] J.-P. Torré, D.F. Fletcher, T. Lasuye, C. Xuereb, An experimental and computational study of the vortex shape in a partially baffled agitated vessel, Chem. Eng. Sci. 62(7) (2007) 1915-1926. [46] J.-P. Torré, D.F. Fletcher, T. Lasuye, C. Xuereb, Single and multiphase CFD approaches for modelling partially baffled stirred vessels:comparison of experimental data with numerical predictions, Chem. Eng. Sci. 62(22) (2007) 6246-6262. [47] A. Buffo, M. Vanni, D.L. Marchisio, Multidimensional population balance model for the simulation of turbulent gas-liquid systems in stirred tank reactors, Chem. Eng. Sci. 70(2012) 31-44. [48] V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Comput. 1(1) (1986) 3-51. [49] V. Yakhot, L.M. Smith, The renormalization group, the ε-expansion and derivation of turbulence models, J. Sci. Comput. 7(1) (1992) 35-61. [50] V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Phys. Fluids A:Fluid Dynamics 4(7) (1992) 1510-1520. [51] P.H. Calderbank, Physical rate processes in industrial fermentations part I:The interfacial area in gas-liquid contacting with mechanical agitation, Trans. Inst. Chem. Engrs 36(1958) 443-463. |