[1] B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid:a battery of choices, Science 334(2011) 928-935. [2] J.B. Goodenough, Electrochemical energy storage in a sustainable modern society, Energy Environ. Sci. 7(2014) 14-18. [3] X. Wang, G.J. Xu, Q.F. Wang, C.L. Lu, C.Z. Zong, J.J. Zhang, L.P. Yue, G.L. Cui, A phase inversion based sponge-like polysulfonamide/SiO2 composite separator for high performance lithium-ion batteries, Chin. J. Chem. Eng. 26(2018) 1292-1299. [4] X.X. Li, H.B. Shi, L.Q. Zhang, J.B. Chenn, P.P. Lv, Novel synthesis of SiOx/C composite as high-capacity lithium-ion battery anode from silica carbon binary xerogel, Chin. J. Chem. Eng. 28(2020) 579-583. [5] H.F. Yu, Z.F. Yang, H.W. Zhu, H. Jiang, C.Z. Li, Nitrogen-doped carbon stabilized LiFe0.5Mn0.5PO4/rGO cathode materials for high-power Li-ion batteries, Chin. J. Chem. Eng. 28(7) (2020) 1935-1940. [6] Y. Zhao, J.J. Wang, C.L. Ma, Y. Li, J. Shi, Z.P. Shao, Interconnected graphene nanosheets with confined FeS2/FeS binary nanoparticles as anode material of sodium-ion batteries, Chem. Eng. J. 378(2019), 122168. [7] F. Wang, W.L. Zhang, H.H. Zhou, H. Chen, Z.Y. Huang, Z.H. Yan, R.J. Jiang, C.Q. Wang, Z. Tan, Y.F. Kuang, Preparation of porous FeS2-C/RG composite for sodium ion batteries, Chem. Eng. J. 380(2020), 122549. [8] C.M. Chen, Y.C. Yang, X. Tang, R.H. Qiu, S.Y. Wang, G.Z. Cao, M. Zhang, Grapheneencapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range, Small. 15(2019) 1804740. [9] M. Shao, Y.Y. Cheng, T. Zhang, S. Li, W.N. Zhang, B. Zheng, J.S. Wu, W.W. Xiong, F.W. Huo, J. Lu, Designing MOFs-derived FeS2@carbon composites for high-rate sodium ion storage with capacitive contributions, ACS Appl. Mater. Interfaces 10(2018) 33097-33104. [10] F.B. Wang, G.D. Li, W.F. Cui, FeS2 hollow nanospheres as high-performance anode for sodium ion battery and their surface pseudocapacitive properties, J. Nanopart. Res. 21(2019), 121. [11] Z.H. Lin, X.H. Xiong, M.N. Fan, D. Xie, G. Wang, C.H. Yang, M.L. Liu, Scalable synthesis of FeS2 nanoparticles encapsulated into N-doped carbon nanosheets as a high-performance sodium-ion battery anode, Nanoscale. 11(2019) 3773-3779. [12] S.W. Wang, Y.P. Jing, L.F. Han, H. Wang, S.D. Wu, Ultrathin carbon-coated FeS2 nanooctahedra for sodium storage with long cycling stability, Inorg. Chem. Front. 6(2019) 459-464. [13] R. Zang, P.X. Li, X. Guo, Z.M. Man, S.T. Zhang, Yolk-shell N-doped carbon coated FeS2 nanocages as a high-performance anode for sodium-ion batteries, J. Mater. Chem. A 7(2019) 14051-14059. [14] S.Y. Ri, H.G. Deng, L.H. Zhou, J. Hu, H.L. Liu, Y. Hu, Lithium storage performance of hollow and core/shell TiO2 microspheres containing carbon, Chin. J. Chem. Eng. 22(2014) 1153-1161. [15] W. Zhuang, L.H. Lu, W. Li, R. An, X. Feng, X.B. Wu, Y.D. Zhu, X.H. Lu, In-situ synthesized mesoporous TiO2-B/anatase microparticles:Improved anodes for lithium ion batteries, Chin. J. Chem. Eng. 23(2015) 583-589. [16] N.N. Wang, C.X. Chu, X. Xu, Y. Du, J. Yang, Z.C. Bai, S.X. Dou, Comprehensive new insights and perspectives into Ti-based anodes for next-generation alkaline metal (Na+, K+) ion batteries, Adv. Energy Mater. 8(2018), 1801888. [17] L. Liu, X.B. Chen, Titanium dioxide nanomaterials:self-structural modifications, Chem. Rev. 114(2014) 9890-9918. [18] N.N. Wang, Z.C. Bai, Y.T. Qian, J. Yang, Double-walled Sb@TiO2-x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries, Adv. Mater. 28(2016) 4126-4133. [19] G. Jeong, J.-G. Kim, M.-S. Park, M. Seo, S.M. Hwang, Y.U. Kim, Y.J. Kim, J.H. Kim, S. Dou, Core-shell structured silicon nanoparticles@TiO2-x/Carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode, ACS Nano 8(2014) 2977-2985. [20] C.X. Chu, J. Yang, Q.Q. Zhang, N.N. Wang, F.E. Niu, X.N. Xu, J. Yang, W.L. Fan, Y.T. Qian, Biphase-interface enhanced sodium storage and accelerated charge transfer:flower-like anatase/bronze TiO2/C as an advanced anode material for Na-ion batteries, ACS Appl. Mater. Interfaces 9(2017) 43648-43656. [21] J.A. Dawson, J. Robertson, Improved calculation of Li and Na intercalation properties in anatase, rutile, and TiO2(B), J. Phys. Chem. C 120(2016) 22910-22917. [22] Y.Q. Zhang, Q. Fu, Q.L. Xu, X. Yan, R.Y. Zhang, Z.D. Guo, F. Du, Y.J. Wei, D. Zhang, G. Chen, Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode material for Li-ion batteries, Nanoscale 7(2015) (122115-112224). [23] F. Legrain, O. Malyi, S. Manzhos, Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide:A comparative first-principles study, J. Power Sources 278(2015) 197-202. [24] X.Q. Chen, H.B. Lin, X.W. Zheng, X. Cai, P. Xia, Y.M. Zhu, X.P. Li, W.S. Li, Fabrication of core-shell porous nanocubic Mn2O3@TiO2 as a high-performance anode for lithium ion batteries, J. Mater. Chem. A 3(2015) 18198-18206. [25] H.J. Song, X.Q. Zhang, T. Chen, X.H. Jia, One-pot synthesis of bundle-like β-FeOOH nanorods and their transformation to porous α-Fe2O3 microspheres, ACS Appl. Mater. Interfaces 8(2016) 16684-16689. [26] X. Wei, W.H. Li, J.A. Shi, L. Gu, Y. Yu, FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage, ACS Appl. Mater. Interfaces 7(2015) 27804-27809. [27] J.F. Ni, S.D. Fu, C. Wu, J. Maier, Y. Yu, L. Li, Self-supported nanotube arrays of sulfurdoped TiO2 enabling ultrastable and robust sodium storage, Adv. Mater. 28(2016) 2259-2265. [28] Z.X. Lu, N.N. Wang, Y.H. Zhang, P. Xue, M.Q. Guo, B. Tang, Z.C. Bai, S.X. Dou, Pyrite FeS2@C nanorods as smart cathode for sodium ion battery with ultra-long lifespan and notable rate performance from tunable pseudocapacitance, Electrochim. Acta 260(2018) 755-761. [29] Z.X. Lu, N.N. Wang, Y.H. Zhang, P. Xue, M.Q. Guo, B. Tang, X. Xu, W.X. Wang, Z.C. Bai, S.X. Dou, Metal-organic framework-derived sea-cucumber-like FeS2@C nanorods with outstanding pseudocapacitive Na-ion storage properties, ACS Appl. Energy Mater. 1(2018) 6234-6241. [30] S.G. Zhang, H.Q. Zhao, M. Wang, Z. Li, J. Mi, Low crystallinity SnS encapsulated in CNTs decorated and S-doped carbon nanofibers as excellent anode material for sodium-ion batteries, Electrochim. Acta 279(2018) 186-194. [31] J. Zheng, Y.S. Liu, G.B. Ji, P. Zhang, X.Z. Cao, B.Y. Wang, C.H. Zhang, X.G. Zhou, Y. Zhu, D.N. Shi, Hydrogenated oxygen-deficient blue anatase as anode for highperformance lithium batteries, ACS Appl. Mater. Interfaces 7(2015) 23431-23438. [32] X.F. Wang, Q.Y. Xiang, B. Liu, L.J. Wang, T. Luo, D. Chen, G.Z. Shen, TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries, Sci. Rep. 3(2013) 2007-2015. [33] W.Z. Fang, Y. Zhou, C.C. Dong, M.Y. Xing, J.L. Zhang, Enhanced photocatalytic activities of vacuum activated TiO2 catalysts with Ti3+ and N co-doped, Catal. Today 266(2016) 188-196. [34] A.G. Dylla, G. Henkelman, K.J. Stevenson, Lithium insertion in nanostructured TiO(2) (B) architectures, Acc. Chem. Res. 46(2013) 1104-1112. [35] B. Chen, Y.H. Meng, F.X. Xie, F. He, C.N. He, K. Davey, N.Q. Zhao, S.Z. Qiao, 1D subnanotubes with anatase/bronze TiO2 nanocrystal wall for high-rate and long-life sodium-ion batteries, Adv. Mater. 30(2018), 1804116. [36] Z.X. Lu, Y.J. Zhai, N.N. Wang, Y.H. Zhang, P. Xue, M.Q. Guo, B. Tang, D. Huang, W.X. Wang, Z.C. Bai, S.X. Dou, FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries, Chem. Eng. J. 380(2020), 122455. [37] Y.J. Liu, W.Q. Wang, Q.D. Chen, C. Xu, D.P. Cai, H.B. Zhan, Resorcinol-formaldehyde resin-coated prussian blue core-shell spheres and their derived unique yolk-shell FeS2@C spheres for lithium-ion batteries, Inorg. Chem. 58(2019) 1330-1338. [38] J. Choi, S.U. Yoon, M.E. Lee, S.I. Park, Y. Myung, H.J. Jin, J.B. Lee, Y.S. Yun, Highperformance nanohybrid anode based on FeS2 nanocubes and nitrogen-rich graphene oxide nanoribbons for sodium ion batteries, J. Ind. Eng. Chem. 81(2020) 61-66. [39] M. Walter, T. Zund, M.V. Kovalenko, Pyrite (FeS2) nanocrystals as inexpensive highperformance lithium-ion cathode and sodium-ion anode materials, Nanoscale. 7(2015) 9158-9163. [40] X.H. Wu, J.H. Guo, M.J. McDonald, S.G. Li, B.B. Xu, Y. Yang, Synthesis and characterization of urchin-like Mn0.33Co0.67C2O4 for Li-ion batteries:role of SEI layers for enhanced electrochemical properties, Electrochim. Acta 163(2015) 93-101. [41] J.S. Cho, J.S. Park, Y.C. Kang, Porous FeS nanofibers with numerous nanovoids obtained by kirkendall diffusion effect for use as anode materials for sodium-ion batteries, Nano Res. 10(2017) 897-907. [42] M.W. Cui, Y. Xiao, L.T. Kang, W. Du, Y.F. Gao, X.Q. Sun, Y.L. Zhou, X.M. Li, H.F. Li, F.Y. Jiang, C.Y. Zhi, Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries, ACS Appl. Energy Mater. 2(2019) 6490-6496. [43] Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries, Energy Environ. Sci. 8(2015) 1309-1316. [44] N.N. Wang, X. Xu, T. Liao, Y. Du, Z.C. Bai, S.X. Dou, Boosting sodium storage of double-shell sodium titanate microspheres constructed from 2D ultrathin nanosheets via sulfur doping, Adv. Mater. 30(2018), 1804157. [45] H.N. He, Q.M. Gan, H.Y. Wang, G.L. Xu, X.Y. Zhang, D. Huang, F. Fu, Y.G. Tang, K. Amine, M.H. Shao, Structure-dependent performance of TiO2/C as anode material for Na-ion batteries, Nano Energy 44(2018) 217-227. [46] P. Xue, N.N. Wang, Z.W. Fang, Z.X. Lu, X. Xu, L. Wang, Y. Du, X.C. Ren, Z.C. Bai, S.X. Dou, G.H. Yu, Rayleigh-instability-induced bismuth nanorod@nitrogen-noped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries, Nano Lett. 19(2019) 1998-2004. [47] X. Xu, R.S. Zhao, B. Chen, L.S. Wu, C.J. Zou, W. Ai, H. Zhang, W. Huang, T. Yu, Progressively exposing active facets of 2d nanosheets toward enhanced pseudocapacitive response and high-rate sodium storage, Adv. Mater. 31(2019) 1900526. [48] Y.L. Liu, N.N. Wang, X.H. Zhao, Z.W. Fang, X. Zhang, Y.Y. Liu, Z.C. Bai, S.X. Dou, G.H. Yu, Hierarchical nanoarchitectured hybrid electrodes based on ultrathin MoSe2 nanosheets on 3D ordered macroporous carbon frameworks for highperformance sodium-ion batteries, J. Mater. Chem. A 8(2020) 2843-2851. [49] N.N. Wang, Y.X. Wang, X. Xu, T. Liao, Y. Du, Z.C. Bai, S.X. Dou, Defect sites-rich porous carbon with pseudocapacitive behaviors as an ultrafast and long-term cycling anode for sodium-ion batteries, ACS Appl. Mater. Interfaces 10(2018) 9353-9361. |