[1] X. Zhu, F. Donat, Q. Imtiaz, C.R. Müller, F. Li, Chemical looping beyond combustion-A perspective, Energy Environ. Sci. (3) (2020) 772-804. [2] J. Adánez, A. Abad, Chemical-looping combustion:status and research needs, Proc. Combust. Inst. 37(4) (2019) 4303-4317. [3] L. Zeng, Z. Cheng, J.A. Fan, L.S. Fan, J. Gong, Metal oxide redox chemistry for chemical looping processes, Nat. Rev. Chem. 2(11) (2018) 349-364. [4] J. Adánez, A. Abad, T. Mendiara, P. Gayán, L.F. De Diego, F. García-Labiano, Chemical looping combustion of solid fuels, Prog. Energy Combust. Sci. 65(2018) 6-66. [5] J. Fan, H. Hong, L. Zhu, Z. Wang, H. Jin, Thermodynamic evaluation of chemical looping combustion for combined cooling heating and power production driven by coal, Energy Convers. Manag. 135(2017) 200-211. [6] B. Wang, H. Li, N. Ding, Q. Shen, H. Zhao, C. Zheng, Chemical looping combustion characteristics of coal with Fe2O3 oxygen carrier, J. Therm. Anal. Calorim. 132(1) (2018) 17-27. [7] L. Yang, Q. Guo, X. Wu, C. Tan, Y. Liu, C. Song, F. Liu, Effects of Bi2O3 on the reactivity of iron-based oxygen carriers in chemical looping combustion, Energy Fuel 33(4) (2019) 3594-3601. [8] T. Song, L. Shen, Review of reactor for chemical looping combustion of solid fuels, Int. J. Greenhouse Gas Control 76(2018) 92-110. [9] H. Ge, W. Guo, L. Shen, T. Song, J. Xiao, Experimental investigation on biomass gasification using chemical looping in a batch reactor and a continuous dual reactor, Chem. Eng. J. 286(2016) 689-700. [10] J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego, Progress in chemicallooping combustion and reforming technologies, Prog. Energy Combust. Sci. 38(2) (2012) 215-282. [11] M. Tang, L. Xu, M. Fan, Progress in oxygen carrier development of methane-based chemical-looping reforming:A review, Appl. Energy 151(2015) 143-156. [12] C. Mesters, A selection of recent advances in C1 chemistry, Ann. Rev. Chem. Biomol. Eng. 7(2016) 223-238. [13] W. Zhou, K. Cheng, J. Kang, New horizon in C1 chemistry:breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels, Chem. Soc. Rev. 48(12) (2019) 3193-3228. [14] M. Hoelscher, A. Kaithal, W. Leitner, Manganese (I)-catalyzed β-methylation of alcohols using methanol as C1 source, Angew. Chem. Int. Ed. 59(1) (2019) 215-220. [15] Z. Huang, Y. Zhang, J. Fu, Chemical looping gasification of biomass char using iron ore as an oxygen carrier, Int. J. Hydrog. Energy 41(40) (2016) 17871-17883. [16] W. Feng, Z. Li, H. Gao, Q. Wang, H. Bai, P. Li, Understanding the molecular structure of HSW coal at atomic level:A comprehensive characterization from combined experimental and computational study, Green Energy Environ. (2020)https://doi.org/10.1016/j.gee.2020.03.013. [17] M. Gao, X. Li, L. Guo, Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics, Fuel Process. Technol. 178(2018) 197-205. [18] L. Guo, H. Zhao, W. Yang, C. Zheng, Biomass direct chemical looping with oxygen uncoupling using Cu-based oxygen carrier, J. Combust. Sci. Technol. 20(6) (2014) 523-528. [19] J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Density functional theory in surface chemistry and catalysis, Proc. Natl. Acad. Sci. 108(3) (2011) 937-943. [20] Ken-ichi Tanaka, Surface nano-structuring by adsorption and chemical reactions, Materials 3(9) (2010) 4518-4549. [21] M. Boudart, G. Djéga-Mariadassou, Kinetics of Heterogeneous Catalytic Reactions, Princeton University Press, USA, 2014. [22] H. Yoshida, Y. Kuwauchi, J.R. Jinschek, K. Sun, S. Tanaka, M. Kohyama, S. Takeda, Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions, Science 335(2012) 317-319. [23] R. Valero, J.R. Gomes, D.G. Truhlar, F. Illas, Density functional study of CO and NO adsorption on Ni-doped MgO (100), J. Chem. Phys. 132(10) (2010), 104701. [24] S. Jiang, Y. Lu, S. Wang, Y. Zhao, X. Ma, Insight into the reaction mechanism of CO2 activation for CH4 reforming over NiO-MgO:A combination of DRIFTS and DFT study, Appl. Surf. Sci. 416(2017) 59-68. [25] G. Peng, L.R. Merte, J. Knudsen, R.T. Vang, E. Lægsgaard, F. Besenbacher, M. Mavrikakis, On the mechanism of low-temperature CO oxidation on Ni (111) and NiO (111) surfaces, J. Phys. Chem. C 114(49) (2010) 21579-21584. [26] Y. Feng, N. Wang, X. Guo, Influence mechanism of supports on the reactivity of Nibased oxygen carriers for chemical looping reforming:A DFT study, Fuel 229(2018) 88-94. [27] X. Cai, X. Wang, X. Guo, C.G. Zheng, Mechanism study of reaction between CO and NiO (00 1) surface during chemical-looping combustion:role of oxygen, Chem. Eng. J. 244(2014) 464-472. [28] F. Liu, J. Liu, Y. Yang, X. Wang, A mechanistic study of CO oxidation over spinel MnFe2O4 surface during chemical-looping combustion, Fuel 230(2018) 410-417. [29] Y. Feng, X. Guo, Study of reaction mechanism of methane conversion over Ni-based oxygen carrier in chemical looping reforming, Fuel 210(2017) 866-872. [30] H. Bai, Y. Zhu, W. Qiao, Y. Huang, Structures, stabilities and electronic properties of graphdiyne nanoribbons, RSC Adv. 1(5) (2011) 768-775. [31] Y. Zhu, H. Bai, Y. Huang, Electronic property and charge carrier mobility of extended nanowires built from narrow graphene nanoribbon and atomic carbon chain, Synth. Met. 204(2015) 57-64. [32] H. Bai, W. Qiao, Y. Zhu, Y. Huang, Crystal orbital study on the combined carbon nanowires constructed from linear carbon chains encapsulated in zigzag doublewalled carbon nanotubes, Curr. Appl. Phys. 15(3) (2015) 342-351. [33] R.A. Evarestov, Quantum Chemistry Of Solids:the LCAO First Principles Treatment Of Crystals, Springer Science & Business Media Press, Germany, 2007. [34] E.J. Baerends, ADF2016, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, the Netherlands, 2016. [35] N.S. Antonova, J.J. Carbó, J.M. Poblet, Quantifying the donor-acceptor properties of phosphine and N-heterocyclic carbene ligands in Grubbs' catalysts using a modified EDA procedure based on orbital deletion, Organometallics 28(15) (2009) 4283-4287. [36] H. Gao, W. Feng, X. Li, H. Bai, W. Qiao, Insights into the non-covalent interaction between modified nucleobases and graphene nanoflake from first-principles, Phys. E. 107(2019) 73-79. [37] H. Bai, H. Gao, W. Feng, Y. Zhao, Y. Wu, Interaction in Li@fullerenes and Li+@fullerenes:first principle insights to Li-based endohedral fullerenes, Nanomaterials 9(4) (2019) 630. [38] C. Lefebvre, G. Rubez, H. Khartabil, J.C. Boisson, C.G. Julia, H. Eric, Accurately extracting the signature of intermolecular interactions present in the nci plot of the reduced density gradient versus electron density, Phys. Chem. Chem. Phys. 19(2017) 17928-17936. [39] T. Lu, F. Chen, Multiwfn:a multifunctional wavefunction analyzer, J. Comput. Chem. 33(5) (2012) 580-592. [40] E.R. Johnson, S. Keinan, P. Mori-Sánchez, W. Yang, Revealing noncovalent interactions, J. Am. Chem. Soc. 132(18) (2010) 6498-6506. [41] Y. Li, H. Bai, L. Li, Y. Huang, Stabilities and electronic properties of nanowires made of single atomic sulfur chains encapsulated in zigzag carbon nanotubes, Nanotechnology 29(2018), 415703. [42] T.F.G.G. Cova, B.F. Milne, S.C.C. Nunes, A.A.C.C. Pais, Drastic stabilization of junction nodes in supramolecular structures based on host-guest complexes, Macromolecules 51(2018) 2732-2741. [43] X. An, Y. Kang, G. Li, The interaction between chitosan and tannic acid calculated based on the density functional theory, Chem. Phys. 520(2019) 100-107. [44] M.V. Hopffgarten, G. Frenking, Energy decomposition analysis, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2(1) (2012) 43-62. [45] J.M. Andrić, M.Z. Misini-Ignjatović, J.S. Murray, P. Politzer, S.D. Zarić, Hydrogen bonding between metal-ion complexes and noncoordinated water:electrostatic potentials and interaction energies, ChemPhysChem 17(13) (2016) 2035-2042. |