[1] M. Ayadi, W. Mattoussi, Scoping of the Tunisian economy, WIDER Working Paper Series (wp-2014-074), World Institute for Development Economic Research (UNU-WIDER). https://ideas.repec.org/p/unu/wpaper/wp-2014-074.html. [2] M.J. Melo, History of natural dyes in the ancient Mediterranean World, in:T. Bechtold, R. Mussak (Eds.), Handbook of Natural Colorants, John Wiley & Sons, Ltd, Chichester, UK, 2009. [3] K.G. Gilbert (nee Stoker), D.T. Cooke, Dyes from plants:past usage, present understanding and potential, Plant Growth Regul. 34(2001) 57-69. [4] P. Garcia-Macias, P. John, Formation of natural indigo derived from Woad (Isatis tinctoria L.) in relation to product purity, J. Agric. Food Chem. 52(2004) 7891-7896. [5] A. Roessler, O. Dossenbach, P. Rys, W. Marte, Direct electrochemical reduction of indigo:process optimization and scale-up in a flow cell, J. Appl. Electrochem. 32(2002) 647-651. [6] A.N. Padden, V.M. Dillon, P. John, J. Edomnds, M.D. Collins, N. Alvarez, Clostridium used in mediaeval dyeing, Nature. 396(1998) 225. [7] R.B. Chavan, Environment-friendly dyeing processes for cotton. NISCAIR-CSIR, India, IJFTR 26(2001) 93-100. [8] A. Roessler, O. Dossenbach, U. Mayer, W. Marte, P. Rys, Direct electrochemical reduction of indigo, Chimia. 55(2001) 879-882. [9] J.G. Montano, N. Ruiz, I. Munoz, X. Domenech, J.A. GarciaHortal, F. Torades, J. Peral, Environmental assessment of different photo-Fenton approaches for commercial reactive dye removal, J. Hazard. Mater. 138(2006) 218-225. [10] S.K. Liehr, A.R. Rubin, B. Tonning, Natural treatment and onsite processes, Water Environment Federation. 76(2004) 1191-1237. [11] M. Dolatabadi, M. Mehrabpour, M. Esfandyari, S. Ahmadzadeh, Adsorption of tetracycline antibiotic onto modified zeolite:experimental investigation and modeling, MethodsX 7(2020) 100885. [12] F. Jamali-Behnam, A.A. Najafpoor, M. Davoudi, T. Rohani-Bastami, H. Alidadi, H. Esmaily, M. Dolatabadi, Adsorptive removal of arsenic from aqueous solutions using magnetite nanoparticles and silica-coated magnetite nanoparticles, Environ. Prog. Sustain. Energy 37(3) (2017) 951-960. [13] A. Abou Dalle, L. Domergue, F. Fourcade, A.A. Assadi, H. Djelal, T. Lendormi,... A. Amrane, Efficiency of DMSO as hydroxyl radical probe in an electrochemical advanced oxidation process-reactive oxygen species monitoring and impact of the current density, Electrochim. Acta 246(2017) 1-8. [14] A. Aboudalle, H. Djelal, F. Fourcade, L. Domergue, A.A. Assadi, T. Lendormi, S. Taha, A. Amrane, Metronidazole removal by means of a combined system coupling an electro-Fenton process and a conventional biological treatment:byproducts monitoring and performance enhancement, J. Hazard. Mater. 359(2018) 85-95. [15] M. Kamagate, A.A. Assadi, T. Kone, S. Giraudet, L. Coulibaly, K. Hanna, Use of laterite as a sustainable catalyst for removal of fluoroquinolone antibiotics from contaminated water, Chemosphere 195(2018) 847-853. [16] S.M. Ghoreishi, R. Haghighi, Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent, Chem. Eng. J. 95(2003) 163-169. [17] S. Sirianuntapiboon, K. Chairattanawan, S. Jungphungsukpanich, Some properties of a sequencing batch reactor system for removal of vat dyes, Bioresour Technology. 97(10) (2006) 1243-1252. [18] S. Ahmadzadeh, M. Rezayi, E. Faghih-Mirzaei, M. Yoosefian, A. Kassim, Highly selective detection of titanium (Ⅲ) in industrial waste water samples using mesooctamethylcalix [4]pyrrole-doped PVC membrane ion-selective electrode, Electrochim. Acta 178(2015) 580-589. [19] A. Kassim, M. Rezayi, S. Ahmadzadeh, G. Rounaghi, M. Mohajeri, N.A. Yusof, T.W. Tee, L.Y. Heng, A.H. Abdullah, A novel ion selective polymeric membrane sensor for determining thallium (I) with high selectivity, IOP Conf. Ser.:Mater. Sci. Eng. 17(2009), https://iopscience.iop.org/article/10.1088/1757-899X/17/1/012010. [20] M.N. Chollom, S. Rathilal, V.L. Pillay, D. Alfa, The applicability of nano-filtration for the treatment and reuse of textile reactive dye effluent, Water SA 41(2015) 398-405. [21] M.Y. Mollah, S.R. Pathak, P.K. Patil, M. Vayuvegula, T.S. Agrawal, J.A.G. Gomes, M. Kesmez, D.L. Cocke, Treatment of orange Ⅱ azo-dye by electrocoagulation (EC) technique in a continuous flow cell using sacrificial iron electrodes, J. Hazard. Mater. 109(1-3) (2004) 165-171. [22] M.Y. Mollah, R. Schennach, J.R. Parga, D.L. Cocke, Electrocoagulation (EC)-science and applications, J. Hazard. Mater. 84(1) (2001) 29-41. [23] M.K. Oden, Treatment of CNC industry wastewater by electrocoagulation technology:An application through response surface methodology, International Journal of Environmental Analytical Chemistry 100(1) (2020) 1-19. [24] A. Amour, B. Merzouk, J.P. Leclerc, F. Lapicque, Removal of reactive textile dye from aqueous solutions by electrocoagulation in a continuous cell, Desalin. Water Treat. 57(48-49) (2016) 22764-22773. [25] A. Singh, A. Srivastava, A. Tripathi, N.N. Dutt, Optimization of brilliant green dye removal efficiency by electrocoagulation using response surface methodology, World J. Environ. Eng. 4(2) (2016) 23-29. [26] S. Zodi, B. Merzouk, O. Potier, F. Lapicque, J.P. Leclerc, Direct red 81 dye removal by a continuous flow electrocoagulation/flotation reactor, Sep. Purif. Technol. 108(2013) 215-222. [27] F. Ghanbari, M. Moradi, A. Eslami, M.M. Emamjomeh, Electrocoagulation/flotation of textile wastewater with simultaneous application of aluminum and iron as anode, Environ. Process. 1(2014) 447-457. [28] A.S. Naje, S.H. Chelliapan, Z. Zakaria, S.A. Abbas, Electrocoagulation using a rotated anode:a novel reactor design for textile wastewater treatment, J. Environ. Manag. 176(2016) 34-44. [29] K. Hendaoui, F. Ayari, I.B. Rayana, R.B. Amar, F. Darragi, M. Trabelsi-Ayadi, Real indigo dyeing effluent decontamination using continuous electrocoagulation cell:study and optimization using response surface methodology, Process Saf. Environ. Prot. 116(2018) 578-589. [30] O. Tünay, M. Simseker, I. Kabda Kabdaslı, T. Ölmez-Hancı, Abatements of reduced sulphur compounds, colour, and organic matter from indigo dyeing effluents by electrocoagulation, Environ. Technol. 35(13) (2014) 1577-1588. [31] I. Kabdaslı, O. Tünay, D. Orhon, Sulfate removal from indigo dyeing textile wastewaters, Water Sci. Technol. 32(12) (1995) 21-27. [32] M.S. Secula, I. Creţescu, S. Petrescu, An experimental study of indigo carmine removal from aqueous solution by electrocoagulation, Desalination 277(1-3) (2011) 227-235. [33] O. Sahu, B. Mazumdar, P.K. Chaudhari, Treatment of wastewater by electrocoagulation:a review, Environ. Sci. Pollut. Res. 21(4) (2013) 2397-2413. [34] C. Cojocaru, G. Zakrzewska-Trznadel, Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration, J. Membr. Sci. 298(1-2) (2007) 56-70. [35] D. Baş, I.H. Boyacı, Modeling and optimization I:usability of response surface methodology, J. Food Eng. 78(3) (2007) 836-845. [36] S. Ahmadzadeh, M. Dolatabadi, In situ generation of hydroxyl radical for efficient degradation of 2,4-dichlorophenol from aqueous solutions, Environ. Monit. Assess. 190(6) (2018) 340. [37] O. Larue, E. Vorobiev, C. Vu, B. Durand, Electrocoagulation and coagulation by iron of latex particles in aqueous suspensions, Sep. Purif. Technol. 31(2) (2003) 177-192. [38] B. Merzouk, B. Gourich, A. Sekki, K. Madani, Ch. Vial, M. Barkaoui, Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process, Chem. Eng. J. 149(1-3) (2009) 207-214. [39] N. Daneshvar, A. Oladegaragoze, N. Djafarzadeh, Decolorization of basic dye solutions by electrocoagulation:an investigation of the effect of operational parameters, J. Hazard. Mater. 129(1-3) (2006) 116-122. [40] M. Kobya, E. Demirbas, O.T. Can, M. Bayramoglu, Treatment of levafix orange textile dye solution by electrocoagulation, J. Hazard. Mater. 132(2-3) (2006) 183-188. [41] M. Bayramoglu, Operating cost analysis of electrocoagulation of textile dye wastewater, Sep. Purif. Technol. 37(2) (2004) 117-125. [42] S. Ahmadzadeh, M. Dolatabadi, Removal of acetaminophen from hospital wastewater using electro-Fenton process, Environ. Earth Sci. 77(2) (2018) 53. [43] M. Rezayi, A. Kassim, S. Ahmadzadeh, A. Naji, H. Ahangar, Conductometric determination of formation constants of tris (2-pyridyl) methylamine and titanium (Ⅲ) in water-acetonitryl mixture, Int. J. Electrochem. Sci. 6(2011) 4378-4387. [44] H. Alidadi, M. Dolatabadi, M. Davoudi, F. Barjasteh-Askari, F. Jamali-Behnam, A. Hosseinzadeh, Enhanced removal of tetracycline using modified sawdust:optimization, isotherm, kinetics, and regeneration studies, Process Saf. Environ. Prot. 117(2018) 51-60. [45] M. Doltabadi, H. Alidadi, M. Davoudi, Comparative study of cationic and anionic dye removal from aqueous solutions using sawdust-based adsorbent, Environ. Prog. Sustain. Energy 35(4) (2016) 1078-1090. [46] M. Dolatabadi, S. Ahmadzadeh, M.T. Ghaneian, Mineralization of mefenamic acid from hospital wastewater using electro Fenton degradation; optimization and identification of removal mechanism issues, Environ. Prog. Sustain. Energy (2019) https://doi.org/10.1002/ep.13380. [47] K. Gautam, S. Kumar, S. Kamsonlian, Decolourization of reactive dye from aqueous solution using electrocoagulation:kinetics and isothermal study, Z. Phys. Chem. 233(10) (2019) 1447-1468. [48] A. Othmani, A. Kesraoui, M. Seffen, The alternating and direct current effect on the elimination of cationic and anionic dye from aqueous solutions by electrocoagulation and coagulation flocculation, Euro-Mediterranean J. Environ. Integration 2(2017) 6. [49] N. Daneshvar, H. Ashassi-Sorkhabi, M.B. Kasiri, Decolorization of dye solution containing acid red 14 by electrocoagulation with a comparative investigation of different electrode connections, J. Hazard. Mater. 112(1-2) (2004) 55-62. [50] M. Taheri, M.R. Moghaddam, M.J. Arami, Techno-economical optimization of reactive blue 19 removal by combined electrocoagulation/coagulation process through MOPSO using RSM and ANFIS models, J. Environ. Manag. 28(2013) 798-806. [51] S.B. Hammouda, F. Fourcade, A. Assadi, I. Soutrel, N. adhoum, A. Amrane, L. Monser, Effective heterogeneous electro-Fenton process for the degradation of a malodorous compound, indole, using iron loaded alginate beads as a reusable catalyst, Appl. Catal. B Environ. 182(2016) 47-58. [52] A.A. Assadi, A. Bouzaza, M. Lemasle, D. Wolbert, Acceleration of trimethylamine removal process under synergistic effect of photocatalytic oxidation and surface discharge plasma reactor, Can. J. Chem. Eng. 93(7) (2015) 1239-1246. [53] S. Ahmadzadeh, M. Dolatabadi, Electrochemical treatment of pharmaceutical wastewater through electrosynthesis of iron hydroxides for practical removal of metronidazole, Chemosphere. 212(2018) 533-539. [54] A. Genc, B. Bakirci, Treatment of emulsified oils by electrocoagulation:pulsed voltage applications, Water Sci. Technol. 71(8) (2015) 1196-1202. [55] D. Donneys-Victoria, D. Bermúdez-Rubio, B. Torralba-Ramírez, N. Marriaga-Cabrales, F. Machuca-Martínez, Removal of indigo carmine dye by electrocoagulation using magnesium anodes with polarity change, Environ. Sci. Pollut. Res. 26(2019) 7164-7176. [56] M. Dolatabadi, S. Ahmadzadeh, A rapid and efficient removal approach for degradation of metformin in pharmaceutical wastewater using electro-Fenton process; optimization by response surface methodology, Water Sci. Technol. 80(4) (2019) 685-694. [57] M. Tir, N. Moulai-Mostefa, Optimization of oil removal from oily wastewater by electrocoagulation using response surface method, J. Hazard. Mater. 158(1) (2008) 107-115. [58] M. Khemis, J.P. Leclerc, G. Tanguy, G. Valentin, F. Lapicque, Treatment of industrial liquid wastes by electrocoagulation:experimental investigations and an overall interpretation model, Chem. Eng. Sci. 61(11) (2016) 3602-3609. [59] R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology:Process and Product Optimization Using Designed Experiments, A WileyInterscience Publications, 2015(978-1-118-91601-8). [60] P.K. Holt, G.W. Barton, M. Wark, C.A. Mitchell, A quantitative comparison between chemical dosing and electrocoagulation, Colloids Surf. A Physicochem. Eng. Asp. 211(2-3) (2002) 233-248. [61] Z. Zaroual, M. Azzi, N. Saib, E. Chainet, Contribution to the study of electrocoagulation mechanism in basic textile effluent, J. Hazard. Mater. 131(1-3) (2006) 73-78. [62] Delphine Neff, Contribution of archaeological analogs to the estimation of average corrosion rates and long term corrosion mechanisms of low carbon steel in soil, Master Thesis, Technology University of Compiegne, Françe, 2003. [63] I.A. Şengil, M. Özacar, The decolorization of C.I. reactive black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes, J. Hazard. Mater. 161(2-3) (2009) 1369-1376. [64] S. Song, Z. He, J. Qiu, L. Xu, J. Chen, Ozone assisted electrocoagulation for decolorization of C.I. reactive black 5 in aqueous solution:an investigation of the effect of operational parameters, Sep. Purif. Technol. 55(2) (2007) 238-245. [65] W.T. Mook, M.K. Aroua, M. Szlachta, C.S. Lee, Optimisation of reactive black 5 dye removal by electrocoagulation process using response surface methodology, Water Sci. Technol. 75(3-4) (2017) 952-962. [66] M. Taheri, M.R.A. Moghaddam, M.J. Arami, Optimization of acid black 172 decolorization by electrocoagulation using response surface methodology, Iran. J Environ. Health Sci. Eng. 9(2012) 23. [67] A. Aleboyeh, N. Daneshvar, M.B. Kasiri, Optimization of C.I. acid red 14 azo dye removal by electrocoagulation batch process with response surface methodology, Chem. Eng. Process. Process Intensif. 47(5) (2008) 827-832. [68] G.K. Mariah, K.S. Pak, Removal of brilliant green dye from aqueous solution by electrocoagulation using response surface methodology, Proceedings, Materials Today, 20(4) (2020) 488-492. [69] G. Varank, H. Erkan, S. Yazýcý, A. Demir, G. Engin, Electrocoagulation of tannery wastewater using monopolar electrodes:process optimization by response surface methodology, International Journal of Environment Research 8(1) (2014) 65-180. [70] D. Ghosh, C.R. Medhi, H. Solanki, M.K. Purkait, Decolorization of crystal violet solution by electrocoagulation, J. Environ. Prot. Sci. 2(2008) 25-35. [71] S. Bener, Ö. Bulca, B. Palas, G. Tekin, S. Atalay, G. Ersöz, Electrocoagulation process for the treatment of real textile wastewater:Effect of operative conditions on the organic carbon removal and kinetic study, Process Safety and Environmental Protection 129(2019) 47-54. [72] A. Othmani, A. Kesraoui, H. Akrout, et al., Use of alternating current for colored water purification by anodic oxidation with SS/PbO2 and Pb/PbO2 electrodes, Environ. Sci. Pollut. Res. 26(2019) 25969-25984. [73] E. GilPavas, S. Correa-Sanchez, Assessment of the optimized treatment of indigopolluted industrial textile wastewater by a sequential electrocoagulation-activated carbon adsorption process, J. Water Process Eng. 36(2020) 101306. |