[1] A. Ramírez-Estrada, V.Y. Mena-Cervantes, J. Fuentes-García, J. Vazquez-Arenas, R. Palma-Goyes, A.I. Flores-Vela, R. Vazquez-Medina, R.H. Altamirano, Cr(III) removal from synthetic and real tanning effluents using an electroprecipitation method, J. Environ. Chem. Eng. 6(2018) 1219-1225. [2] M. Ahmaruzzaman, V.K. Gupta, Rice husk and its ash as low-cost adsorbents in water and wastewater treatment, Ind. Eng. Chem. Res. 50(2011) 13589-13613. [3] G. Lofrano, S. Meriç, G.E. Zengin, D. Orhon, Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review, Sci. Total Environ. 461-462(2013) 265-281. [4] V.K. Gupta, I. Ali, T.A. Saleh, M.N. Siddiqui, S. Agarwal, Chromium removal from water by activated carbon developed from waste rubber tires, Environ. Sci. Pollut. Res. Int 20(2013) 1261-1268. [5] N. Mathur, P. Bhatnagar, P. Sharma, Review of the mutagenicity of textile dye products, Univ. J Environ. Res Technol. 2(2012) 1-18. [6] United State Environmental Protection Agency (USEPA), Priority Pollutant List, 1986(2014) 1-2. [7] PME Presidency of Metrology and Environment, Kingdom of Saudi Arabia, General Environmental Regulations And Rules for Implementation, Document No.1409-01(2001). [8] G.R. Kishore, R.P. Sree, D. Krishna, Industrial wastes as adsorbents for the removal of chromium from waste water: A review. Int. J. Chem. Sci. 11(2013) 1371-1384. [9] S. Lin, C. Lian, M. Xu, W. Zhang, L. Liu, K. Lin, Study on competitive adsorption mechanism among oxyacid-type heavy metals in co-existing system: Removal of aqueous As (V), Cr (III) and As (III) using magnetic iron oxide nanoparticles (MIONPs) as adsorbents, Appl. Surf. Sci. 422(2017) 675-681. [10] M. Syakirin, F. Mohd, S. Nurjaliah, Adsorption of manganese in aqueous solution by steel slag, Procedia Environ. Sci. 30(2015) 145-150. [11] L. Bláhová, Z. Navrátilová, M. Mucha, Alkali-activation of blast furnace slag as possible modification for improving sorption properties of heavy metals, Inzynieria Miner. 1(2017) 59-64. [12] S.K. Srivastava, V.K. Gupta, D. Mohan, Removal of lead and chromium, Environ. Eng. 23(1997) 461-468. [13] S. Bae, F. Hikaru, M. Kanematsu, C. Yoshizawa, Removal of hexavalent chromium in portland cement using ground granulated, Materials 11(1) (2017) 11. [14] C. Han, Y. Jiao, Q. Wu, W. Yang, H. Yang, X. Xue, Kinetics and mechanism of hexavalent chromium removal by basic oxygen furnace slag, J. Environ. Sci. 46(2016) 63-71. [15] T.C. Nguyen, P. Loganathan, T.V. Nguyen, Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash, Environ Sci Pollut Res Int 25(21) (2018) 20430-20438. [16] D. Dupont, E. Renders, S. Raiguel, K. Binnemans, New metal extractants and super-acidic ionic liquids derived from sulfamic acid, Chem. Commun. 52(2016) 7032-7035. [17] S.A. El-hakam, S.E. Samra, S.M. El-dafrawy, A.A. Ibrahim, R.S. Salama, A.I. Ahmed, Synthesis of sulfamic acid supported on Cr-MIL-101 as a heterogeneous acid catalyst and efficient adsorbent for methyl orange dye, Rsc Adv 8(37) (2018) 20511-20533. [18] N. Zahra, M. Z. Kassaee, E. Eidi, Homopiperazine sulfamic acid functionalized mesoporous silica nanoparticles (MSNs-HPZ-SO3H) as an efficient catalyst for one-pot synthesis of 1-amidoalkyl-2-naphthols, New J. Chem. 40(2016) 4720-4726. [19] S. Gomez-GonZalez, S. Efrain, C.A., Gregorio Guadalupe, Manriquez-Gonzalez, Ricardo, Cruz-Hernandez, Wencel De la, Gomez-Salazar, Trivalent chromium removal from aqueous solutions by a sol-gel.pdf, Materials Research Bulletin. 59(2014) 394-404. [20] L. Yang, X. Qian, Z. Wang, Steel slag as low-cost adsorbent for the removal of phenanthrene and naphthalene, Adsorpt. Sci. Technol. 36(3-4) (2018) 1160-1177. [21] J. Safari, M. Ahmadzadeh, Zwitterionic sulfamic acid functionalized nanoclay: A novel nanocatalyst for the synthesis of dihydropyrano[2,3-c]pyrazoles and spiro[indoline-3,4′ -pyrano[2,3-c]pyrazole] derivatives, J. Taiwan Inst. Chem. Eng. 74(2017) 14-24. [22] A. Ghorbani-choghamarani, G. Azadi, Synthesis and characterization of sulfamic acid-functionalized nanoparticles and study of its catalytic activity for the oxidation of sulfides to sulfoxides, Chem Inforrn 89(2016) 49-54. [23] L. Shiri, H. Narimani, M. Kazemi, Synthesis and characterization of sulfamic acid supported on Fe3O4 nanoparticles: A green, versatile and magnetically separable acidic catalyst for oxidation reactions and Knoevenagel condensation, Appl. Organomet. Chem. 32(2018) 1-12. [24] M.M. Kaid, A. Gebreil, S.A. El-Hakam, A.I. Ahmed, A.A. Ibrahim, Sulfamic acid incorporated HKUST-1: A highly active catalyst and efficient adsorbent, RSC Adv. 10(26) (2020) 15586-15597. [25] R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology, third ed., John Wiley Son, Inc, New Jersey, 2009. [26] M.H. Essa, N.D. Mu’azu, S. Lukman, A. Bukhari, Integrated electrokineticsadsorption remediation of saline-sodic soils: Effects of voltage gradient and contaminant concentration on soil electrical conductivity, Sci. World J. 2013(2013) 618495. [27] M. Manohar, J. Joseph, T. Selvaraj, D. Sivakumar, Application of desirabilityfunction and RSM to optimize the multi-objectives while turning Inconel 718 using coated carbide tools, Int. J. Manuf. Technol. Manage. 27(4-6) (2013) 218. [28] S. Dubey, S.N. Upadhyay, Y.C. Sharma, Optimization of removal of Cr by calumina nano-adsorbent using response surface methodology, Ecol. Eng. 97(2016) 272-283. [29] U.J. Etim, S.A. Umoren, U.M. Eduok, Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution, J. Saudi Chem. Soc. 20(2016) S67-S76. [30] M.H. Essa, N.D. Mu’azu, S. Lukman, A. Bukhari, Application of box-behnken design to hybrid electrokinetic-adsorption removal of mercury from contaminated saline-sodic clay soil, Soil Sediment Contam. 24(2015) 30-48. [31] J. Kyzioł, Effect of physical properties and cation exchange capacity on sorption of heavy metals onto peats, Polish J. Environ. Stud. 11(6) (2002) 713. [32] L. Mouni, L. Belkhiri, J.C. Bollinger, A. Bouzaza, A. Assadi, A. Tirri, F. Dahmoune, K. Madani, H. Remini, Removal of methylene blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies, Appl. Clay Sci. 153(2018) 38-45. [33] M.H. Al-Malack, M. Dauda, Competitive adsorption of cadmium and phenol on activated carbon produced from municipal sludge, J. Environ. Chem. Eng. 5(2017) 2718-2729. [34] S. Liu, J. Li, S. Xu, M. Wang, Y. Zhang, X. Xue, A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature, Bioresour. Technol. 282(2019) 48-55. [35] A.L. Arim, M.J. Quina, L.M. Gando-Ferreira, Uptake of trivalent chromium from aqueous solutions by xanthate pine bark: Characterization, batch and column studies, Process Saf. Environ. Prot. 121(2019) 374-386. [36] H. Panda, N. Tiadi, M. Mohanty, C.R. Mohanty, Studies on adsorption behavior of an industrial waste for removal of chromium from aqueous solution, South Afr. J. Chem. Eng. 23(2017) 132-138. [37] I. Ahmad, N. Ahmad, N. Iqbal, M. Zahid, M. Iqbal, Journal of Environmental Chemical Engineering Chromium adsorption using waste tire and conditions optimization by response surface methodology, J. Environ. Chem. Eng. 5(2017) 2740-2751. [38] TC. Nguyen, P. Loganathan, T.V. Nguyen, Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash, Chem. Eng. J. 156(1) (2018) 20430-20438. [39] J. Sren, U. Narkiewicz, A.W. Morawski, J. Wro, B. Michalkiewicz, Comparison of optimized isotherm models and error functions for carbon dioxide adsorption on activated carbon, J. Chem. Eng. Data 60(11) (2015) 3148-3158. [40] S.S.H. Babazadeh, Isotherms for the sorption of zinc and copper onto kaolinite: comparison of various error functions, Int. J. Environ. Sci. Technol. 11(1) (2014) 111-118. [41] I. Tosun, Ammonium removal from aqueous solutions by clinoptilolite: _ Determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models, Int J Enriron Res Pubic Health 9(3) (2012) 970-984. [42] L. Meili, P.V. Lins, C.L.P.S. Zanta, J.I. Soletti, L.M.O. Ribeiro, C.B. Dornelas, T.L. Silva, M.G.A. Vieira, Applied clay science MgAl-LDH/Biochar composites for methylene blue removal by adsorption, Appl. Clay Sci. 168(2019) 11-20. [43] D.S. Tong, C.W. Wu, M.O. Adebajo, G.C. Jin, W.H. Yu, S.F. Ji, C.H. Zhou, Adsorption of methylene blue from aqueous solution onto porous cellulosederived carbon/montmorillonite nanocomposites, Appl. Clay Sci. 161(2018) 256-264. [44] H.S. Mohamed, N.K. Soliman, D.A. Abdelrheem, A.A. Ramadan, A.H. Elghandour, S.A. Ahmed, Adsorption of Cd2+ and Cr3+ ions from aqueous solutions by using residue of Padina gymnospora waste as promising low-cost adsorbent, Heliyon 5(3) (2019) e01287. [45] Z. Li, X. Meng, Z. Zhang, Equilibrium and kinetic modelling of adsorption of Rhodamine B on MoS2, Mater. Res. Bull. 111(2019) 238-244. [46] R. Elangovan, L. Philip, K. Chandraraj, Biosorption of hexavalent and trivalent chromium by palm flower (Borassus aethiopum), Chem. Eng. J. 141(2008) 99-111. [47] R. Fonseca-correa, L. Giraldo, J.C. Moreno-piraján, Journal of analytical and applied pyrolysis trivalent chromium removal from aqueous solution with physically and chemically modified corncob waste, J. Anal. Appl. Pyrolysis 101(2013) 132-141. [48] D. Pathania, S. Sharma, P. Singh, Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast, Arab. J. Chem. 10(2017) S1445-S1451. [49] J. Yang, M. Yu, T. Qiu, Journal of industrial and engineering chemistry adsorption thermodynamics and kinetics of Cr (VI) on KIP210 resin, J. Ind. Eng. Chem. 20(2014) 480-486. [50] Y. Cantu, A. Remes, A. Reyna, D. Martinez, J. Villarreal, H. Ramos, S. Trevino, C. Tamez, A. Martinez, T. Eubanks, J.G. Parsons, Thermodynamics, kinetics, and activation energy studies of the sorption of chromium (III) and chromium (VI) to a Mn3O4 nanomaterial, Chem. Eng. J. 254(2014) 374-383. [51] A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water Resour. Ind. 15(2016) 14-27. [52] R. Khosravi, G. Moussavi, M. Taghi, M. Hassan, Chromium adsorption from aqueous solution using novel green nanocomposite: Adsorbent characterization, isotherm, kinetic and thermodynamic investigation, J. Mol. Liq. 256(2018) 163-174. [53] R. Hasan, C.C. Chong, H.D. Setiabudi, R. Jusoh, A.A. Jalil, Process optimization of methylene blue adsorption onto eggshell-treated palm oil fuel ash, Environ. Technol. Innov. 13(2019) 62-73. [54] D. Durano, A.W. Trochimczuk, U. Beker, Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer, Chem. Eng. J. 187(2012) 193-202. [55] S. Cheng, L. Zhang, H. Xia, J. Peng, J. Shu, C. Li, X. Jiang, Q. Zhang, Adsorption behavior of methylene blue onto waste-derived adsorbent and exhaust gases recycling, RSC Adv. 7(44) (2017) 27331-27341. [56] M. Cheng, G. Zeng, D. Huang, C. Lai, Y. Liu, C. Zhang, R. Wang, L. Qin, W. Xue, B. Song, S. Ye, H. Yi, High adsorption of methylene blue by salicylic acid-methanol modified steel converter slag and evaluation of its mechanism, J. Colloid Interface Sci. 515(2018) 232-239. [57] S.N.M. Suhaimy, L.C. Abdullah, Removal of methylene blue from aqueous solution by using electrical arc furnace (EAF) slag, Indones. J. Chem. 20(1) (2020) 113. [58] A.S. Dhmees, N.M. Khaleel, S.A. Mahmoud, Synthesis of silica nanoparticles from blast furnace slag as cost-effective adsorbent for efficient azo-dye removal, Egypt. J. Pet. 27(4) (2018) 1113-1121. [59] Y.J.C. Martins, A.C.M. Almeida, B.M. Viegas, R.A. do Nascimento, N.F.D.P. Ribeiro, Use of red mud from amazon region as an adsorbent for the removal of methylene blue: process optimization, isotherm and kinetic studies, Int. J. Environ. Sci. Technol. 17(10) (2020) 4133-4148. [60] C.H. Weng, Y.F. Pan, Adsorption characteristics of methylene blue from aqueous solution by sludge ash, Colloids Surf. A Physicochem. Eng. Asp. 274(1-3) (2006) 154-162. [61] F.T. Senberber, M. Yildirim, N.K. Mermer, E.M. Derun, Adsorption of Cr(III) from aqueous solution using borax sludge, Acta Chim. Slov. 64(2017) 654-660. [62] A.I. Ferraz, C. Amorim, T. Tavares, J.A. Teixeira, Chromium(III) biosorption onto spent grains residual from brewing industry: equilibrium, kinetics and column studies, Int. J. Environ. Sci. Technol. 12(5) (2015) 1591-1602. [63] Z.H. Yang, S. Xiong, B. Wang, Q. Li, W.C. Yang, Cr(III) adsorption by sugarcane pulp residue and biochar, J. Cent. South Univ. 20(5) (2013) 1319-1321. [64] V.K. Gupta, I. Ali, Removal of lead and chromium from wastewater using bagasse fly ash- A sugar industry waste, J. Colloid Interface Sci. 271(2) (2004) 321-328. [65] A. Oumani, L. Mandi, F. Berrekhis, N. Ouazzani, Removal of Cr3+ from tanning effluents by adsorption onto phosphate mine waste: Key parameters and mechanisms, J. Hazard. Mater. 378(2019) 120718. |