[1] S. Oksana, B. Marian, R. Mahendra, S.H. Bo, Plant phenolic compounds for food, pharmaceutical and cosmetics production, J. Med. Plant Res. 6 (2012) 2526–2539. [2] G. Velderrain-Rodríguez, H. Palafox-Carlos, A. Wall-Medrano, J. Ayala-Zavala, C.O. Chen, M. Robles-Sánchez, H. Astiazaran-García, E. Alvarez-Parrilla, G. González-Aguilar, Phenolic compounds: their journey after intake, Food Funct. 5 (2014) 189–197. [3] J. Ma, Y. Gu, P. Xu, A roadmap to engineering antiviral natural products synthesis in microbes, Curr. Opin. Biotechnol. 66 (2020) 140–149. [4] N.J. Averesch, J.O. Krömer, Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds—present and future strain construction strategies, Front. Bioeng. Biotechnol. 6 (2018) 32. [5] M. Jiang, H. Zhang, Engineering the shikimate pathway for biosynthesis of molecules with pharmaceutical activities in E. coli, Curr. Opin. Biotechnol. 42 (2016) 1–6. [6] J.-H. Lee, V.F. Wendisch, Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass, J. Biotechnol. 257 (2017) 211–221. [7] X. Li, Z. Chen, Y. Wu, Y. Yan, X. Sun, Q. Yuan, Establishing an artificial pathway for efficient biosynthesis of hydroxytyrosol, ACS Synth. Biol. 7 (2018) 647–654. [8] W. Chen, J. Yao, J. Meng, W. Han, Y. Tao, Y. Chen, Y. Guo, G. Shi, Y. He, J.-M. Jin, Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynthesis, Nat. Commun. 10 (2019) 1–12. [9] J. Yao, Y. He, N. Su, S.R. Bharath, Y. Tao, J.-M. Jin, W. Chen, H. Song, S.-Y. Tang, Developing a highly efficient hydroxytyrosol whole-cell catalyst by debottlenecking rate-limiting steps, Nat. Commun. 11 (2020) 1–12. [10] S. Kambourakis, K. Draths, J. Frost, Synthesis of gallic acid and pyrogallol from glucose: replacing natural product isolation with microbial catalysis, J. Am. Chem. Soc. 122 (2000) 9042–9043. [11] Z. Chen, X. Shen, J. Wang, J. Wang, Q. Yuan, Y. Yan, Rational engineering of phydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway, Biotechnol. Bioeng. 114 (2017) 2571–2580. [12] J. Wang, X. Shen, Q. Yuan, Y. Yan, Microbial synthesis of pyrogallol using genetically engineered Escherichia coli, Metab. Eng. 45 (2018) 134–141. [13] X. Shen, J. Wang, J. Wang, Z. Chen, Q. Yuan, Y. Yan, High-level de novo biosynthesis of arbutin in engineered Escherichia coli, Metab. Eng. 42 (2017) 52–58. [14] Y. Bai, H. Yin, H. Bi, Y. Zhuang, T. Liu, Y. Ma, De novo biosynthesis of gastrodin in Escherichia coli, Metab. Eng. 35 (2016) 138–147. [15] Q. Liu, T. Yu, X. Li, Y. Chen, K. Campbell, J. Nielsen, Y. Chen, Rewiring carbon metabolism in yeast for high level production of aromatic chemicals, Nat. Commun. 10 (2019) 1–13. [16] J. Wu, X. Zhang, M. Dong, J. Zhou, Stepwise modular pathway engineering of Escherichia coli for efficient one-step production of (2S)-pinocembrin, J. Biotechnol. 231 (2016) 183–192. [17] C.M. Palmer, K.K. Miller, A. Nguyen, H.S. Alper, Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a b-oxidation mediated strategy, Metab. Eng. 57 (2020) 174–181. [18] J. Sáez-Sáez, G. Wang, E.R. Marella, S. Sudarsan, M.C. Pastor, I. Borodina, Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production, Metab. Eng. 62 (2020) 51–61. [19] S. Zhao, J.A. Jones, D.M. Lachance, N. Bhan, O. Khalidi, S. Venkataraman, Z. Wang, M.A. Koffas, Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering, Metab. Eng. 28 (2015) 43–53. [20] X. Liu, X.-B. Li, J. Jiang, Z.-N. Liu, B. Qiao, F.-F. Li, J.-S. Cheng, X. Sun, Y.-J. Yuan, J. Qiao, Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides, Metab. Eng. 47 (2018) 243–253. [21] Z. Li, X. Wang, H. Zhang, Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering, Metab. Eng. 54 (2019) 1–11. [22] Z. Chen, X. Sun, Y. Li, Y. Yan, Q. Yuan, Metabolic engineering of Escherichia coli for microbial synthesis of monolignols, Metab. Eng. 39 (2017) 102–109. [23] T. Williams, N. Averesch, G. Winter, M. Plan, C. Vickers, L. Nielsen, J. Krömer, Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae, Metab. Eng. 29 (2015) 124–134. [24] Y. Satoh, K. Tajima, M. Munekata, J.D. Keasling, T.S. Lee, Engineering of Ltyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol, Metab. Eng. 14 (2012) 603–610. [25] X. Sun, Y. Lin, Q. Yuan, Y. Yan, Biological production of muconic acid via a prokaryotic 2, 3-dihydroxybenzoic acid decarboxylase, ChemSusChem 7 (2014) 2478–2481. [26] E.-S. Seo, J. Kang, J.-H. Lee, G.-E. Kim, G.J. Kim, D. Kim, Synthesis and characterization of hydroquinone glucoside using Leuconostoc mesenteroides dextransucrase, Enzym. Microb. Technol. 45 (2009) 355–360. [27] P.-H. Wu, G.R. Nair, I.-M. Chu, W.-T. Wu, High cell density cultivation of Escherichia coli with surface anchored transglucosidase for use as whole-cell biocatalyst for a-arbutin synthesis, J. Ind. Microbiol. Biotechnol. 35 (2008) 95. [28] B. Thompson, M. Machas, D.R. Nielsen, Engineering and comparison of nonnatural pathways for microbial phenol production, Biotechnol. Bioeng. 113 (2016) 1745–1754. [29] Y. Ren, S. Yang, Q. Yuan, X. Sun, Microbial production of phenol via salicylate decarboxylation, RSC Adv. 5 (2015) 92685–92689. [30] Z. Chen, X. Shen, J. Wang, J. Wang, R. Zhang, J.F. Rey, Q. Yuan, Y. Yan, Establishing an artificial pathway for de novo biosynthesis of vanillyl alcohol in Escherichia coli, ACS Synth. Biol. 6 (2017) 1784–1792. [31] P. Karak, Biological activities of flavonoids: an overview, Int. J. Pharm. Sci. Res. 10 (2019) 1567–1574. [32] S. Zhou, Y. Lyu, H. Li, M.A. Koffas, J. Zhou, Fine-tuning the (2S)-naringenin synthetic pathway using an iterative high-throughput balancing strategy, Biotechnol. Bioeng. 116 (2019) 1392–1404. [33] P. Xu, M. Marsafari, J. Zha, M. Koffas, Microbial coculture for flavonoid synthesis, Trends Biotechnol. 38 (7) (2020) 686–688. [34] Y. Bai, H. Bi, Y. Zhuang, C. Liu, T. Cai, X. Liu, X. Zhang, T. Liu, Y. Ma, Production of salidroside in metabolically engineered Escherichia coli, Sci. Rep. 4 (2014) 6640. [35] V. Ganesan, Z. Li, X. Wang, H. Zhang, Heterologous biosynthesis of natural product naringenin by co-culture engineering, Synth. Syst. Biotechnol. 2 (2017) 236–242. [36] H. Akdemir, A. Silva, J. Zha, D.V. Zagorevski, M.A. Koffas, Production of pyranoanthocyanins using Escherichia coli co-cultures, Metab. Eng. 55 (2019) 290–298. [37] X. Wang, A. Shao, Z. Li, L. Policarpio, H. Zhang, Constructing E. coli co-cultures for de novo biosynthesis of natural product acacetin, Biotechnol. J. 15 (9) (2020) 2000131. [38] X. Wang, Z. Li, L. Policarpio, M.A. Koffas, H. Zhang, De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering, Appl. Microbiol. Biotechnol. (2020) 1–13. [39] W. Zhang, H. Liu, X. Li, D. Liu, X.T. Dong, F.F. Li, E.X. Wang, B.Z. Li, Y.J. Yuan, Production of naringenin from D-xylose with co-culture of E. coli and S. cerevisiae, Eng. Life Sci. 17 (2017) 1021–1029. [40] H. Cui, M.C. Song, Y.H. Ban, S.Y. Jun, A.S. Kwon, J.Y. Lee, Y.J. Yoon, High-yield production of multiple O-methylated phenylpropanoids by the engineered Escherichia coli–Streptomyces cocultivation system, Microb. Cell Factories 18 (2019) 67. [41] Y. Yang, Y. Lin, L. Li, R.J. Linhardt, Y. Yan, Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products, Metab. Eng. 29 (2015) 217–226. [42] P. Xu, Production of chemicals using dynamic control of metabolic fluxes, Curr. Opin. Biotechnol. 53 (2018) 12–19. [43] Y. Lv, S. Qian, G. Du, J. Chen, J. Zhou, P. Xu, Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction, Metab. Eng. 54 (2019) 109–116. [44] Y. Lv, Y. Gu, J. Xu, J. Zhou, P. Xu, Coupling metabolic addiction with negative autoregulation to improve strain stability and pathway yield, Metab. Eng. 61 (2020) 79–88. [45] M. Marsafari, H. Samizadeh, B. Rabiei, A. Mehrabi, M. Koffas, P. Xu, Biotechnological production of flavonoids: an update on plant metabolic engineering, microbial host selection, and genetically encoded biosensors, Biotechnol. J. 15 (8) (2020) 1900432. [46] W. Zeng, L. Guo, S. Xu, J. Chen, J. Zhou, High-throughput screening technology in industrial biotechnology, Trends Biotechnol. 38 (8) (2020) 888–906. [47] R. Wang, B.F. Cress, Z. Yang, J.C. Hordines III, S. Zhao, G.Y. Jung, Z. Wang, M.A. Koffas, Design and characterization of biosensors for the screening of modular assembled naringenin biosynthetic library in Saccharomyces cerevisiae, ACS Synth. Biol. 8 (2019) 2121–2130. [48] S. Qian, Y. Li, P.C. Cirino, Biosensor-guided improvements in salicylate production by recombinant Escherichia coli, Microb. Cell Factories 18 (2019) 1–9. [49] D. Xiong, S. Lu, J. Wu, C. Liang, W. Wang, W. Wang, J.-M. Jin, S.-Y. Tang, Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor, Metab. Eng. 40 (2017) 115–123. [50] S. Jang, S. Jang, Y. Xiu, T.J. Kang, S.-H. Lee, M.A. Koffas, G.Y. Jung, Development of artificial riboswitches for monitoring of naringenin in vivo, ACS Synth. Biol. 6 (2017) 2077–2085. [51] Y. Xiu, S. Jang, J.A. Jones, N.A. Zill, R.J. Linhardt, Q. Yuan, G.Y. Jung, M.A. Koffas, Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures, Biotechnol. Bioeng. 114 (2017) 2235–2244. [52] K.K. Yang, Z. Wu, F.H. Arnold, Machine-learning-guided directed evolution for protein engineering, Nat. Methods 16 (2019) 687–694. [53] P.-S. Huang, S.E. Boyken, D. Baker, The coming of age of de novo protein design, Nature 537 (2016) 320–327. [54] C. Gu, G.B. Kim, W.J. Kim, H.U. Kim, S.Y. Lee, Current status and applications of genome-scale metabolic models, Genome Biol. 20 (2019) 121. [55] T.E. Sandberg, M.J. Salazar, L.L. Weng, B.O. Palsson, A.M. Feist, The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology, Metab. Eng. 56 (2019) 1–16. |