[1] Q. Wang, X. Chen, A.N. Jha, H. Rogers, Natural gas from shale formation-the evolution, evidences and challenges of shale gas revolution in United States, Renew. Sustain. Energy Rev. 30(2014) 1-28. [2] V. Arora, Y. Cai, US natural gas exports and their global impacts, Appl. Energy 120(2014) 95-103. [3] Z. Sun, J. Shi, K. Wu, X. Li, Gas flow behavior through inorganic nanopores in shale considering confinement effect and moisture content, Ind. Eng. Chem. Res. 57(9) (2018) 3430-3440. [4] Z. Xiang, Z. Hu, D. Cao, W. Yang, J. Lu, B. Han, W. Wang, Metal-organic frameworks with incorporated carbon nanotubes:improving CO2 and CH4 storage capacities by lithium doping, Angew. Chem. Int. Ed. 50(2011) 491-494. [5] R.W. Howarth, R. Santoro, A. Ingraffea, Methane and the greenhouse-gas footprint of natural gas from shale formations, Clim. Change 106(4) (2011) 679. [6] H. Wang, X. Wang, X. Jin, D. Cao, Molecular dynamics simulation of diffusion of shale oils in montmorillonite, J. Phys. Chem. C 120(2016) 8986-8991. [7] O. Ashmoore, D. Evensen, C. Clarke, J. Krakower, J. Simon, Regional newspaper coverage of shale gas development across Ohio, New York, and Pennsylvania:Similarities, differences, and lessons, Energy Res. Soc. Sci. 11(2016) 119-132. [8] M. Gasparik, A. Ghanizadeh, P. Bertier, Y. Gensterblum, S. Bouw, B.M. Krooss, High-pressure methane sorption isotherms of black shales from the Netherlands, Energy Fuels 26(8) (2012) 4995-5004. [9] J. Wang, H. Jiang, Q. Zhou, J. Wu, S. Qin, China's natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model, Renew. Sustain. Energy Rev. 53(2016) 1149-1167. [10] G. Chen, S. Lu, K. Liu, Q. Xue, T. Han, C. Xu, M. Tong, X. Pang, B. Ni, S. Lu, Critical factors controlling shale gas adsorption mechanisms on Different Minerals Investigated Using GCMC simulations, Mar. Pet. Geol. 100(2019) 31-42. [11] C. Clarkson, B. Haghshenas, A. Ghanizadeh, F. Qanbari, J. Williams-Kovacs, N. Riazi, C. Debuhr, H. Deglint, Nanopores to megafractures:current challenges and methods for shale gas reservoir and hydraulic fracture characterization, J. Nat. Gas Sci. Eng. 31(2016) 612-657. [12] X. Wang, B. Zhang, Z. He, L. He, K. Yang, T. Huang, F. Luo, J. Tang, L. Gan, Electrical properties of Longmaxi organic-rich shale and its potential applications to shale gas exploration and exploitation, J. Nat. Gas Sci. Eng. 36(2016) 573-585. [13] H. Chen, K.E. Carter, Water usage for natural gas production through hydraulic fracturing in the United States from 2008 to 2014, J. Environ. Manage. 170(2016) 152-159. [14] C. Clark, A. Burnham, C. Harto, R. Horner, Hydraulic fracturing and shale gas production:technology, impacts, and policy, Argonne National Lab. (2012) 1-16. [15] S. Christopherson, N. Rightor, How shale gas extraction affects drilling localities:lessons for regional and city policy makers, J. Town City Manage. 2(4) (2012) 1-20. [16] J. Connor, L. Molofsky, S. Richardson, G. Bianchi-Mosquera, In Environmental issues and answers related to shale gas development, SPE Latin American and Caribbean Health, Safety, Environment and Sustainability Conference, Society of Petroleum Engineers, 2015. [17] E. Krogulec, K. Sawicka, Groundwater protection in shale gas exploration areas-a Polish perspective, Episodes 38(1) (2015) 9-20. [18] A.J. Krupnick, H.G. Gordon, What experts say about the environmental risks of shale gas development, Agric. Resource Econ. Rev. 44(2) (2015) 106-119. [19] M.J. Small, P.C. Stern, E. Bomberg, S.M. Christopherson, B.D. Goldstein, A.L. Israel, R.B. Jackson, A. Krupnick, M.S. Mauter, J. Nash, D.W. North, S.M. Olmstead, A. Prakash, B. Rabe, N. Richardson, S. Tierney, T. Webler, G. WongParodi, B. Zielinska, Risks and risk governance in unconventional shale gas development, Environ. Sci. Technol. 48(15) (2014) 8289-8297. [20] B.G. Rahm, S.J. Riha, Evolving shale gas management:water resource risks, impacts, and lessons learned, Environ. Sci. Process. Impacts 16(6) (2014) 1400-1412. [21] L. Huang, Z. Ning, Q. Wang, W. Zhang, Z. Cheng, X. Wu, H. Qin, Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery, Appl. Energy 210(2018) 28-43. [22] J. Zhou, M. Liu, X. Xian, Y. Jiang, Q. Liu, X. Wang, Measurements and modelling of CH4 and CO2 adsorption behaviors on shales:implication for CO2 enhanced shale gas recovery, Fuel 251(2019) 293-306. [23] J. Hwang, L. Joss, R. Pini, Measuring and modelling supercritical adsorption of CO2 and CH4 on montmorillonite source clay, Micropor. Mesopor. Mater. 273(2019) 107-121. [24] H. Sun, H. Zhao, N. Qi, Y. Li, Simulation to enhance shale gas recovery using carbon dioxide in silica nanopores with different sizes, Energy Technol. 5(11) (2017) 2065-2071. [25] D. Hui, Y. Pan, P. Luo, Y. Zhang, L. Sun, C. Lin, Effect of supercritical CO2 exposure on the high-pressure CO2 adsorption performance of shales, Fuel 247(2019) 57-66. [26] M. Pathak, H. Huang, P. Meakin, M. Deo, Molecular investigation of the interactions of carbon dioxide and methane with kerogen:application in enhanced shale gas recovery, J. Nat. Gas Sci. Eng. 51(2018) 1-8. [27] T.A. Ho, Y. Wang, Y. Xiong, L.J. Criscenti, Differential retention and release of CO2 and CH4 in kerogen nanopores:implications for gas extraction and carbon sequestration, Fuel 220(2018) 1-7. [28] H.Y. Xu, H. Yu, J.C. Fan, Y.B. Zhu, F.C. Wang, H.A. Wu, Two-phase transport characteristic of shale gas and water through hydrophilic and hydrophobic nanopores, Energy Fuels 34(2020) 4407-4420. [29] H. Yu, H.Y. Xu, J.C. Fan, F.C. Wang, H.A. Wu, Roughness Factor-dependent transport characteristic of shale gas through amorphous kerogen nanopores, J. Phys. Chem. C 124(2020) 12752-12765. [30] J. Sun, Z. Liu, D. Cao, A permeation model of shale gas in cylindrical-like kerogen pores at geological conditions, Chem. Eng. Sci. 207(2019) 457-463. [31] Q. Wang, L. Huang, Molecular insight into competitive adsorption of methane and carbon dioxide in montmorillonite:effect of clay structure and water content, Fuel 239(2019) 32-43. [32] L. Chong, E.M. Myshakin, Molecular simulations of competitive adsorption of carbon dioxide-methane mixture on illitic clay surfaces, Fluid Phase Equilib. 472(2018) 185-195. [33] Y. Liu, X. Ma, H.A. Li, J. Hou, Competitive adsorption behavior of hydrocarbon (s)/CO2 mixtures in a double-nanopore system using molecular simulations, Fuel 252(2019) 612-621. [34] M. Burton, S.L. Bryant, Eliminating buoyant migration of sequestered CO2 through surface dissolution:implementation costs and technical challenges, SPE Reservoir Eval. Eng. 12(03) (2009) 399-407. [35] O. Yevtushenko, D. Bettge, R. Bäßler, S. Bohraus, Corrosion of CO2 transport and injection pipeline steels due to the condensation effects caused by SO2 and NO2 impurities, Mater. Corros. 66(4) (2015) 334-341. [36] H. Zhang, D. Cao, Molecular simulation of displacement of shale gas by carbon dioxide at different geological depths, Chem. Eng. Sci. 156(2016) 121-127. [37] J. Shi, L. Gong, Z. Huang, J. Yao, Molecular simulation of displacement of methane by injection gases in shale, Comput. Sci.-ICCS 2018(2018) 139-148. [38] J. Shi, L. Gong, S. Sun, Z. Huang, B. Ding, J. Yao, Competitive adsorption phenomenon in shale gas displacement processes, RSC Adv. 9(44) (2019) 25326-25335. [39] M.A. Ahmadi, M. Zeinali Hasanvand, S. Shokrolahzadeh, Technical and economic feasibility study of flue gas injection in an Iranian oil field, Petroleum 1(3) (2015) 217-222. [40] O. Akinluyi, R. Hazlett, Enhanced-oil-recovery potential for lean-gas reinjection in zipper fractures in liquid-rich basins, SPE J. 23(03) (2018) 625-639. [41] F. Du, B. Nojabaei, A review of gas injection in shale reservoirs:enhanced oil/gas recovery approaches and greenhouse gas control, Energies 12(12) (2019). [42] B. Jia, J.-S. Tsau, R. Barati, A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs, Fuel 236(2019) 404-427. [43] Z. Li, D. Elsworth, Controls of CO2-N2 gas flood ratios on enhanced shale gas recovery and ultimate CO2 sequestration, J. Petrol. Sci. Eng. 179(2019) 1037-1045. [44] J. Tan, P. Weniger, B. Krooss, A. Merkel, B. Horsfield, J. Zhang, C.J. Boreham, G. van Graas, B.A. Tocher, Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, South China, Part Ⅱ:Methane sorption capacity, Fuel 129(2014) 204-218. [45] T. Tong, D. Cao, A mesoscale model for diffusion and permeation of shale gas at geological depth, AIChE J. 64(3) (2018) 1059-1066. [46] Y. Ma, Z. Pan, N. Zhong, L.D. Connell, D.I. Down, W. Lin, Y. Zhang, Experimental study of anisotropic gas permeability and its relationship with fracture structure of Longmaxi Shales, Sichuan Basin, China, Fuel 180(2016) 106-115. [47] H. Han, Y. Cao, S.-J. Chen, J.-G. Lu, C.-X. Huang, H.-H. Zhu, P. Zhan, Y. Gao, Influence of particle size on gas-adsorption experiments of shales:an example from a Longmaxi Shale sample from the Sichuan Basin, China, Fuel 186(2016) 750-757. [48] Y. Hao, L. Yuan, P. Li, W. Zhao, D. Li, D. Lu, Molecular simulations of methane adsorption behavior in illite nanopores considering basal and edge surfaces, Energy Fuels 32(4) (2018) 4783-4796. [49] K. Refson, S.-H. Park, G. Sposito, Ab initio computational crystallography of 2:1 clay minerals:1. Pyrophyllite-1Tc, J. Phys. Chem. B 107(48) (2003) 13376-13383. [50] J. Zhang, M.B. Clennell, K. Liu, M. Pervukhina, G. Chen, D.N. Dewhurst, Methane and carbon dioxide adsorption on illite, Energy Fuels 30(12) (2016) 10643-10652. [51] G. Chen, J. Zhang, S. Lu, M. Pervukhina, K. Liu, Q. Xue, H. Tian, S. Tian, J. Li, M.B. Clennell, D.N. Dewhurst, Adsorption behavior of hydrocarbon on illite, Energy Fuels 30(11) (2016) 9114-9121. [52] F. Zeng, W.B. Huang, M. Liu, S.F. Lu, L. Yu, in:A Study on Quantitative Characterization of Adsorption Capacity of Shale, Advanced Materials Research, Trans Tech Publ, 2014, pp. 20-25. [53] R.T. Cygan, J.-J. Liang, A.G. Kalinichev, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field, J. Phys. Chem. B 108(4) (2004) 1255-1266. [54] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING:a generic force field for molecular simulations, J. Phys. Chem. 94(26) (1990) 8897-8909. [55] M.G. Martin, J.I. Siepmann, Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes, J. Phys. Chem. B 102(14) (1998) 2569-2577. [56] W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118(45) (1996) 11225-11236. [57] T. Ohkubo, J. Miyawaki, K. Kaneko, R. Ryoo, N.A. Seaton, Adsorption properties of templated mesoporous carbon (CMK-1) for nitrogen and supercritical methane experiment and GCMC simulation, J. Phys. Chem. B 106(25) (2002) 6523-6528. [58] Q. Wang, H. Wang, S. Peng, X. Peng, D. Cao, Adsorption and separation of Xe in metal-organic frameworks and covalent-organic materials, J. Phys. Chem. C 118(19) (2014) 10221-10229. [59] Y. Liu, J. Wilcox, Molecular simulation studies of CO2 adsorption by carbon model compounds for carbon capture and sequestration applications, Environ. Sci. Technol. 47(1) (2012) 95-101. [60] X. Peng, X. Cheng, D. Cao, Computer simulations for the adsorption and separation of CO2/CH4/H2/N2 gases by UMCM-1 and UMCM-2 metal organic frameworks, J. Mater. Chem. 21(30) (2011) 11259-11270. [61] Z. Zhai, X. Wang, X. Jin, L. Sun, J. Li, D. Cao, Adsorption and diffusion of shale gas reservoirs in modeled clay minerals at different geological depths, Energy Fuels 28(12) (2014) 7467-7473. [62] H. Zhang, X. Zeng, Z. Zhao, Z. Zhai, D. Cao, Adsorption and selectivity of CH4/CO2 in functional group rich organic shales, J. Nat. Gas Sci. Eng. 39(2017) 82-89. [63] A. Gupta, S. Chempath, M.J. Sanborn, L.A. Clark, R.Q. Snurr, Object-oriented programming paradigms for molecular modeling, Mol. Simul. 29(1) (2003) 29-46. [64] K. Zeng, P. Jiang, Z. Lun, R. Xu, Molecular simulation of carbon dioxide and methane adsorption in shale organic nanopores, Energy Fuels 33(3) (2018) 1785-1796. |