[1] Y. Yang, S.W. Lee, H. Ghasemi, J. Loomis, X.B. Li, D. Kraemer, G. Zheng, G.Y. Cui, G. Chen, Charging-free electrochemical system for harvesting low-grade thermal energy, Proc. Natl. Acad. Sci. 111(2014) 17011-17016. [2] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488(2012) 294-303. [3] M. Imran, F. Haglind, M. Asim, J.Z. Alvi, Recent research trends in organic Rankine cycle technology:A bibliometric approach, Renew. Sust. Energ. Rev. 81(2018) 552-562. [4] S. Saini, H.S. Yaddanapudi, K. Tian, Y. Yin, D. Magginetti, A. Tiwari, Terbium ion doping in Ca3Co4O9:A step towards high-performance thermoelectric materials, Sci. Rep. 7(2017) 44621. [5] M. Rahimi, A.P. Straub, F. Zhang, X.P. Zhu, M. Elimelech, C.A. Gorski, B.E. Logan, Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity, Energ Environ. Sci. 11(2018) 276-285. [6] E. Mu, G. Yang, X. Fu, F. Wang, Z. Hu, Fabrication and characterization of ultrathin thermoelectric device for energy conversion, J. Power Sources 394(2018) 17-25. [7] F. Zhang, J. Liu, W. Yang, B.E. Logan, A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power, Energ Environ. Sci. 8(2015) 343-349. [8] F. Zhang, N. LaBarge, W. Yang, J. Liu, B.E. Logan, Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures, ChemSusChem 8(2015) 1043-1048. [9] M. Rahimi, L. Zhu, K.L. Kowalski, X.P. Zhu, C.A. Gorski, M.A. Hickner, B.E. Logan, Improved electrical power production of thermally regenerative batteries using a poly(phenylene oxide) based anion exchange membrane, J. Power Sources 342(2017) 956-963. [10] X.P. Zhu, M. Rahimi, C.A. Gorski, B.E. Logan, A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat, ChemSusChem 9(2016) 873-879. [11] V.M. Palakkal, T. Nguyen, P. Nguyen, M. Chernova, J.E. Rubio, G. Venugopalan, M. Hatzell, X.P. Zhu, C.G. Arges, High power thermally regenerative ammoniacopper redox flow battery enabled by a zero gap cell design, low-resistant membranes, and electrode coatings, ACS Appl. Energy Mater. 3(2020) 4787-4798. [12] M. Rahimi, A. D'Angelo, C.A. Gorski, O. Scialdone, B.E. Logan, Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery, J. Power Sources 351(2017) 45-50. [13] M. Rahimi, T. Kim, C.A. Gorski, B.E. Logan, A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity, J. Power Sources 373(2018) 95-102. [14] W.G. Wang, H. Tian, G.Q. Shu, D.Q. Huo, F. Zhang, X.P. Zhu, A bimetallic thermally regenerative ammonia-based battery for high power density and efficiently harvesting low-grade thermal energy, J. Mater Chem A. 7(2019) 5991-6000. [15] W.G. Wang, G.Q. Shu, H. Tian, D.Q. Huo, X.P. Zhu, A bimetallic thermallyregenerative ammonia-based flow battery for low-grade waste heat recovery, J. Power Sources 424(2019) 184-192. [16] W.G. Wang, G.Q. Shu, X.P. Zhu, H. Tian, Decoupled electrolytes towards enhanced energy and high temperature performance of thermally regenerative ammonia batteries, J. Mater. Chem. A 8(2020) 12351. [17] L. Zhang, Y.X. Li, X. Zhu, J. Li, Q. Fu, Q. Liao, Z.D. Wei, Copper foam electrodes for increased power generation in thermally regenerative ammonia-based batteries for low-grade waste heat recovery, Ind. Eng. Chem. Res. 58(2019) 7408-7415. [18] Y.S. Zhang, L. Zhang, J. Li, X. Zhu, Q. Fu, Q. Liao, Y. Shi, Performance of a thermally regenerative ammonia-based flow battery with 3D porous electrodes:Effect of reactor and electrode design, Electrochim. Acta 331(2020) 135442. [19] Y. Shi, L. Zhang, J. Li, Q. Fu, X. Zhu, Q. Liao, Y.S. Zhang, 3-D printed gradient porous composite electrodes improve anodic current distribution and performance in thermally regenerative flow battery for low-grade waste heat recovery, J. Power Sources 473(2020), 228525. [20] Y. Shi, L. Zhang, J. Li, Q. Fu, X. Zhu, Q. Liao, Y.S. Zhang, Cu/Ni composite electrodes for increased anodic coulombic efficiency and electrode operation time in a thermally regenerative ammonia-based battery for converting lowgrade waste heat into electricity, Renew. Energ. 159(2020) 162-171. [21] R. Wang, Y.S. Li, Twin-cocoon-derived self-standing nitrogen-oxygen-rich monolithic carbon material as the cost-effective electrode for redox flow batteries, J. Power Sources 421(2019) 139-146. [22] L. Zhang, J. Li, X. Zhu, D.D. Ye, Q. Liao, Anodic current distribution in a literscale microbial fuel cell with electrode arrays, Chem. Eng. J. 223(2013) 623-631. [23] H. Liu, S.A. Chen, L.P. Huang, B.E. Logan, Scale-up of membrane-free singlechamber microbial fuel cells, J. Power Sources 179(2008) 274-279. [24] J. Li, L.B. Hu, L. Zhang, D.D. Ye, X. Zhu, Q. Liao, Uneven biofilm and current distribution in three-dimensional macroporous anodes of bio-electrochemical systems composed of graphite electrode arrays, Bioresour. Technol. 228(2017) 25-30. |