[1] R. Morales, I. Moreno-Gonzalez, C. Soto, Cross-seeding of misfolded proteins: implications for etiology and pathogenesis of protein misfolding diseases, PLoS Pathog. 9 (2013), e1003537. [2] R. Morales, L.D. Estrada, R. Diaz-Espinoza, D. Morales-Scheihing, M.C. Jara, J. Castilla, C. Soto, Molecular cross talk between misfolded proteins in animal models of Alzheimer’s and prion diseases, J. Neurosci. 30 (2010) 4528–4535. [3] R. Hu, M. Zhang, H. Chen, B. Jiang, J. Zheng, Cross-seeding interaction between b-amyloid and human islet amyloid polypeptide, ACS Chem. Neurosci. 6 (2015) 1759–1768. [4] M. Zhang, R. Hu, H. Chen, X. Gong, F. Zhou, L. Zhang, J. Zheng, Polymorphic associations and structures of the cross-seeding of Ab1–42 and hIAPP1–37 polypeptides, J. Chem. Inf. Model. 55 (2015) 1628–1639. [5] M. Zhang, R. Hu, H. Chen, Y. Chang, J. Ma, G. Liang, J. Mi, Y. Wang, J. Zheng, Polymorphic cross-seeding amyloid assemblies of amyloid-b and human islet amyloid polypeptide, Phys. Chem. Chem. Phys. 17 (2015) 23245–23256. [6] M. Zhang, R. Hu, B. Ren, H. Chen, B. Jiang, J. Ma, J. Zheng, Molecular understanding of Ab-hIAPP cross-seeding assemblies on lipid membranes, ACS Chem. Neurosci. 8 (2017) 524–537. [7] P.K. Mandal, J.W. Pettegrew, E. Masliah, R.L. Hamilton, R. Mandal, Interaction between Aβ peptide and a synuclein: molecular mechanisms in overlapping pathology of Alzheimer’s and Parkinson’s in dementia with Lewy body disease, Neurochem. Res. 31 (2006) 1153–1162. [8] I.-C. Stancu, B. Vasconcelos, D. Terwel, I. Dewachter, Models of b-amyloid induced Tau-pathology: the long and “folded” road to understand the mechanism, Mol. Neurodegener. 9 (2014) 1–14. [9] X. Li, X. Zhang, A.R.A. Ladiwala, D. Du, J.K. Yadav, P.M. Tessier, P.E. Wright, J.W. Kelly, J.N. Buxbaum, Mechanisms of transthyretin inhibition of b-amyloid aggregation in vitro, J. Neurosci. 33 (2013) 19423–19433. [10] P. Liu, S. Zhang, M.-S. Chen, Q. Liu, C. Wang, C. Wang, Y.-M. Li, F. Besenbacher, M. Dong, Co-assembly of human islet amyloid polypeptide (hIAPP)/insulin, Chem. Commun. 48 (2012) 191–193. [11] K. Hartman, J.R. Brender, K. Monde, A. Ono, M.L. Evans, N. Popovych, M.R. Chapman, A. Ramamoorthy, Bacterial curli protein promotes the conversion of PAP248-286 into the amyloid SEVI: cross-seeding of dissimilar amyloid sequences, PeerJ 1 (2013) e5. [12] E. Cereda, M. Barichella, C. Pedrolli, C. Klersy, E. Cassani, R. Caccialanza, G. Pezzoli, Diabetes and risk of Parkinson’s disease: a systematic review and meta-analysis, Diabetes Care 34 (2011) 2614–2623. [13] B.Y. Ma, R. Nussinov, Selective molecular recognition in amyloid growth and transmission and cross-species barriers, J. Mol. Biol. 421 (2012) 172–184. [14] Y.A. Vitrenko, E.O. Gracheva, J.E. Richmond, S.W. Liebman, Visualization of aggregation of the Rnq1 prion domain and cross-seeding interactions with Sup35NM, J. Biol. Chem. 282 (2007) 1779–1787. [15] C. Guo, S. Cote, N. Mousseau, G. Wei, Distinct helix propensities and membrane interactions of human and rat IAPP1-19 monomers in anionic lipid bilayers, J. Phys. Chem. B 119 (2015) 3366–3376. [16] A. Ramamoorthy, Insights into protein misfolding and amyloidogenesis, Phys. Chem. Chem. Phys. 15 (2013) 8867. [17] H. Han, P.H. Weinreb, P.T. Lansbury, The core alzheimer’s peptide NAC forms amyloid fibrils which seed and are seeded by b-amyloid: is NAC a common trigger or target in neurodegenerative disease?, Chem. Bio. 2 (1995) 163–169. [18] M. Zhang, R. Hu, G. Liang, Y. Chang, Y. Sun, Z. Peng, J. Zheng, Structural and energetic insight into the cross-seeding amyloid assemblies of human IAPP and rat IAPP, J. Phys. Chem. B 118 (2014) 7026–7036. [19] M. Zhang, R. Hu, H. Chen, Y. Chang, X. Gong, F. Liu, J. Zheng, Interfacial interaction and lateral association of cross-seeding assemblies between hIAPP and rIAPP oligomers, Phys. Chem. Chem. Phys. 17 (2015) 10373–10382. [20] R. Hu, B. Ren, M. Zhang, H. Chen, Y. Liu, L. Liu, X. Gong, B. Jiang, J. Ma, J. Zheng, Seed-induced heterogeneous cross-seeding self-assembly of human and rat islet polypeptides, ACS Omega 2 (2017) 784–792. [21] N.J. Fawver, Y. Ghiwot, C. Koola, W. Carrera, J. Rodriguez-Rivera, C.T. Hernandez, K. Dineley, Y. Kong, J. Li, J. Jhamandas, Islet amyloid polypeptide (IAPP):asecond amyloid inAlzheimer ’sdisease,Curr.Alzheimer Res.11(2014) 928–940. [22] M.E. Oskarsson, J.F. Paulsson, S.W. Schultz, M. Ingelsson, P. Westermark, G.T. Westermark, In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease, Am. J. Pathol. 185 (2015) 834–846. [23] Z.-G. Li, W. Zhang, A.A. Sima, Alzheimer-like changes in rat models of spontaneous diabetes, Diabetes 56 (2007) 1817–1824. [24] N. Wijesekara, R. Ahrens, M. Sabale, L. Wu, K. Ha, G. Verdile, P.E. Fraser, Amyloid-β and islet amyloid pathologies link Alzheimer’s disease and type 2 diabetes in a transgenic model, FASEB J. 31 (2017) 5409–5418. [25] I. Moreno-Gonzalez, G. Edwards III, N. Salvadores, M. Shahnawaz, R. DiazEspinoza, C. Soto, Molecular interaction between type 2 diabetes and Alzheimer’s disease through cross-seeding of protein misfolding, Mol. Psychiatr. 22 (2017) 1327–1334. [26] K. Jackson, G.A. Barisone, E. Diaz, L.w. Jin, C. DeCarli, F. Despa, Amylin deposition in the brain: a second amyloid in Alzheimer disease?, Ann. Neurol. 74 (2013) 517–526. [27] J. Miklossy, H. Qing, A. Radenovic, A. Kis, B. Vileno, F. Làszló, L. Miller, R.N. Martins, G. Waeber, V. Mooser, F. Bosman, K. Khalili, N. Darbinian, P.L. McGeer, Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes, Neurobiol. Aging 31 (2010) 1503–1515. [28] B. O’Nuallain, A.D. Williams, P. Westermark, R. Wetzel, Seeding specificity in amyloid growth induced by heterologous fibrils, J. Biol. Chem. 279 (2004) 17490–17499. [29] K. Ono, R. Takahashi, T. Ikeda, M. Mizuguchi, T. Hamaguchi, M. Yamada, Exogenous amyloidogenic proteins function as seeds in amyloid b-protein aggregation, BBA -Mol. Basis Dis. 1842 (2014) 646–653. [30] L.M. Yan, A. Velkova, M. Tatarek-Nossol, E. Andreetto, A. Kapurniotu, IAPP mimic blocks Aβ cytotoxic self-assembly: cross-suppression of amyloid toxicity of Aβ and IAPP suggests a molecular link between Alzheimer’s disease and type II diabetes, Angew. Chem. Int. Edit. 46 (2007) 1246–1252. [31] E. Andreetto, L.M. Yan, M. Tatarek-Nossol, A. Velkova, R. Frank, A. Kapurniotu, Identification of hot regions of the A beta-IAPP interaction interface as highaffinity binding sites in both cross-and self-association, Angew. Chem. Int. Edit. 49 (2010) 3081–3085. [32] J. Seeliger, F. Evers, C. Jeworrek, S. Kapoor, K. Weise, E. Andreetto, M. Tolan, A. Kapurniotu, R. Winter, Cross-amyloid interaction of Abeta and IAPP at lipid membranes, Angew. Chem. Int. Edit. 51 (2012) 679–683. [33] P. Bharadwaj, T. Solomon, B.R. Sahoo, K. Ignasiak, S. Gaskin, J. Rowles, G. Verdile, M.J. Howard, C.S. Bond, A. Ramamoorthy, Amylin and beta amyloid proteins interact to form amorphous heterocomplexes with enhanced toxicity in neuronal cells, Sci. Rep. 10 (2020) 1–14. [34] W.M. Berhanu, F. Yaşar, U.H.E. Hansmann, In silico cross seeding of Aβ and amylin fibril-like oligomers, ACS Chem. Neurosci. 4 (2013) 1488–1500. [35] M. Baram, Y. Atsmon-Raz, B. Ma, R. Nussinov, Y. Miller, Amylin–Ab oligomers at atomic resolution using molecular dynamics simulations: a link between Type 2 diabetes and Alzheimer’s disease, Phys. Chem. Chem. Phys. 18 (2016) 2330–2338. [36] G.M. Shankar, S. Li, T.H. Mehta, A. Garcia-Munoz, N.E. Shepardson, I. Smith, F. M. Brett, M.A. Farrell, M.J. Rowan, C.A. Lemere, C.M. Regan, D.M. Walsh, B.L. Sabatini, D.J. Selkoe, Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory, Nat. Med. 14 (2008) 837–842. [37] A.S. DeToma, S. Salamekh, A. Ramamoorthy, M.H. Lim, Misfolded proteins in Alzheimer’s disease and type II diabetes, Chem. Soc. Rev. 41 (2012) 608–621. [38] J. Janson, T. Laedtke, J.E. Parisi, P. O’Brien, R.C. Petersen, P.C. Butler, Increased risk of type 2 diabetes in Alzheimer disease, Diabetes 53 (2004) 474–481. [39] M.R. Nicolls, The clinical and biological relationship between type II diabetes mellitus and Alzheimers disease, Curr. Alzheimer Res. 1 (2004) 47–54. [40] M. Jucker, L.C. Walker, Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders, Ann. Neurol. 70 (2011) 532–540. [41] C. Sims-Robinson, B. Kim, A. Rosko, E.L. Feldman, How does diabetes accelerate Alzheimer disease pathology?, Nat. Rev. Neurol. 6 (2010) 551–559. [42] N.T. Vagelatos, G.D. Eslick, Type 2 diabetes as a risk factor for Alzheimer’s disease: the confounders, interactions, and neuropathology associated with this relationship, Epidemiol. Rev. 35 (2013) 152–160. [43] X. Li, D. Song, S.X. Leng, Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment, Clin. Interv. Aging 10 (2015) 549–560. [44] H. Mulder, A. Leckstrom, R. Uddman, E. Ekblad, P. Westermark, F. Sundler, Islet amyloid polypeptide (amylin) is expressed in sensory neurons, J. Neurosci. 15 (1995) 7625–7632. [45] Z. Arvanitakis, R.S. Wilson, J.L. Bienias, D.A. Evans, D.A. Bennett, Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function, Arch. Neurol. 61 (2004) 661–666. [46] K.S. Franco, D. Bronson, Diabetes mellitus and Alzheimer disease, Arch. Neurol. 62 (2005) 330–331. [47] A. Akomolafe, A. Beiser, J.B. Meigs, R. Au, R.C. Green, L.A. Farrer, P.A. Wolf, S. Seshadri, Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham Study, Arch. Neurol. 63 (2006) 1551–1555. [48] E. Adeghate, T. Donath, A. Adem, Alzheimer disease and diabetes mellitus: do they have anything in common?, Curr. Alzheimer Res. 10 (2013) 609–617. [49] M. Rasool, A. Malik, A.M. Qazi, I.A. Sheikh, A. Manan, S. Shaheen, M.H. Qazi, A.G. Chaudhary, A.M. Abuzenadah, M. Asif, M.H. Alqahtani, Z. Iqbal, M.M. Shaik, S.H. Gan, M.A. Kamal, Current view from Alzheimer disease to type 2 diabetes mellitus, CNS Neurol. Disord. Drug Targets 13 (2014) 533–542. [50] P.C. May, L.N. Boggs, K.S. Fuson, Neurotoxicity of human amylin in rat primary hippocampal cultures: similarity to Alzheimer’s disease amyloid-beta neurotoxicity, J. Neurochem. 61 (1993) 2330–2333. [51] W.A. Banks, A.J. Kastin, Differential permeability of the blood-brain barrier to two pancreatic peptides: Insulin and amylin, Peptides 19 (1998) 883–889. [52] G. Paxinos, S.Y. Chai, G. Christopoulos, X.F. Huang, A.W. Toga, H.Q. Wang, P.M. Sexton, In vitro autoradiographic localization of calcitonin and amylin binding sites in monkey brain, J. Chem. Neuroanat. 27 (2004) 217–236. [53] K. Beaumont, M.A. Kenney, A.A. Young, T.J. Rink, High-affinity amylin bindingsites in rat-brain, Mol. Pharmacol. 44 (1993) 493–497. [54] U. Arnelo, M.K. Herrington, E. Theodorsson, T.E. Adrian, R. Reidelberger, J. Larsson, J. Marcusson, L. Strommer, X.Z. Ding, J. Permert, Effects of long-term infusion of anorexic concentrations of islet amyloid polypeptide on neurotransmitters and neuropeptides in rat brain, Brain Res. 887 (2000) 391–398. [55] P. Brundin, R. Melki, R. Kopito, Prion-like transmission of protein aggregates in neurodegenerative diseases, Nat. Rev. Mol. Cell Bio. 11 (2010) 301–307. [56] A. Mukherjee, D. Morales-Scheihing, N. Salvadores, I. Moreno-Gonzalez, C. Gonzalez, K. Taylor-Presse, N. Mendez, M. Shahnawaz, A.O. Gaber, O.M. Sabek, Induction of IAPP amyloid deposition and associated diabetic abnormalities by a prion-like mechanism, J. Exp. Med. 214 (2017) 2591–2610. [57] Z. Jaunmuktane, S. Mead, M. Ellis, J.D. Wadsworth, A.J. Nicoll, J. Kenny, F. Launchbury, J. Linehan, A. Richard-Loendt, A.S. Walker, Evidence for human transmission of amyloid-b pathology and cerebral amyloid angiopathy, Nature 525 (2015) 247–250. [58] A. Mukherjee, C. Soto, Prion-like protein aggregates and type 2 diabetes, CSH Perspect. Med. 7 (2017), a024315. [59] M. Guentchev, T. Voigtländer, C. Haberler, M.H. Groschup, H. Budka, Evidence for oxidative stress in experimental prion disease, Neurobiol. Dis. 7 (2000) 270– 273. [60] D. Gustafson, E. Rothenberg, K. Blennow, B. Steen, I. Skoog, An 18-year followup of overweight and risk of Alzheimer disease, Arch. Intern. Med. 163 (2003) 1524–1528. [61] K. Beaumont, M.A. Kenney, A.A. Young, T.J. Rink, High affinity amylin binding sites in rat brain, Mol. Pharmacol. 44 (1993) 493–497. [62] Y. Lu, P. Derreumaux, Z. Guo, N. Mousseau, G. Wei, Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent, Proteins: Struct., Function, Bioinf. 75 (2009) 954–963. [63] J.-P. Guo, T. Arai, J. Miklossy, P.L. McGeer, Aβ and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer’s disease, P. Natl Acad. Sci. U.S.A. 103 (2006) 1953–1958. [64] R. Morales, K.M. Green, C. Soto, Cross currents in protein misfolding disorders: interactions and therapy, CNS Neurol. Disord. Drug Targets 8 (2009) 363–371. [65] D. Eisenberg, R. Nelson, M.R. Sawaya, M. Balbirnie, S. Sambashivan, M.I. Ivanova, A.O. Madsen, C. Riekel, The structural biology of protein aggregation diseases: Fundamental questions and some answers, Acc. Chem. Res. 39 (2006) 568–575. [66] M. Stefani, Structural features and cytotoxicity of amyloid oligomers: implications in Alzheimer’s disease and other diseases with amyloid deposits, Prog. Neurobiol. 99 (2012) 226–245. [67] Y. Miller, B.Y. Ma, R. Nussinov, Alzheimer Aβ amyloid annular fibrils: insight into polymorphism, Biophys. J. 100 (2011) 531. [68] A. Srivastava, P.V. Balaji, Size, orientation and organization of oligomers that nucleate amyloid fibrils: clues from MD simulations of pre-formed aggregates, BBA-Proteins Proteom. 1824 (2012) 963–973. [69] R. Qi, Y. Luo, B. Ma, R. Nussinov, G. Wei, Conformational distribution and alpha-helix to beta-sheet transition of human amylin fragment dimer, Biomacromolecules 15 (2014) 122–131. [70] M.R. Krebs, L.A. Morozova-Roche, K. Daniel, C.V. Robinson, C.M. Dobson, Observation of sequence specificity in the seeding of protein amyloid fibrils, Protein Sci. 13 (2004) 1933–1938. [71] W.Q. Qiu, M. Wallack, M. Dean, E. Liebson, M. Mwamburi, H. Zhu, Association between amylin and amyloid-b peptides in plasma in the context of apolipoprotein E4 allele, PLoS ONE 9 (2014), e88063. [72] G. Skofitseh, W. Gubisch, S.J. Wimalawansa, D.M. Jacobowitz, Comparative immunohistochemical distribution of amylin-like and calcitonin gene related peptide like immunoreactivity in the rat central nervous system, Can. J. Physiol. Pharmacol. 73 (1995) 945–956. [73] X.-X. Xi, J. Sun, H.-C. Chen, A.-D. Chen, L.-P. Gao, J. Yin, Y.-H. Jing, High-fat diet increases amylin accumulation in the hippocampus and accelerates brain aging in hIAPP transgenic mice, Front. Aging Neurosci. 11 (2019) 225. [74] W.A. Banks, A.J. Kastin, L.M. Maness, W. Huang, J.B. Jaspan, Permeability of the blood-brain barrier to amylin, J. Life Sci. 57 (1995) 1993–2001. [75] R.O. Weller, A. Massey, Y.M. Kuo, A.E. Roher, Cerebral amyloid angiopathy: accumulation of Aβ in interstitial fluid drainage pathways in Alzheimer’s disease, Ann. N.Y. Acad. Sci. 903 (2000) 110–117. [76] N. Verma, M. Liu, H. Ly, A. Loria, K.S. Campbell, H. Bush, P.A. Kern, P.A. Jose, H. Taegtmeyer, D.M. Bers, Diabetic microcirculatory disturbances and pathologic erythropoiesis are provoked by deposition of amyloid-forming amylin in red blood cells and capillaries, Kidney Int. 97 (2020) 143–155. [77] J. Hardy, K. Cullen, Amyloid at the blood vessel wall, Nat. Med. 12 (2006) 756– 757. [78] G. Ferrier, A. Pierson, P. Jones, S. Bloom, S. Girgis, S. Legon, Expression of the rat amylin (IAPP/DAP) gene, J. Mol. Endocrinol. 3 (1989) R1–R4. [79] L. D’Este, S.J. Wimalawansa, T.G. Renda, Distribution of amylinimmunoreactive neurons in the monkey hypothalamus and their relationships with the histaminergic system, Arch. Histol. 64 (2001) 295–303. [80] B. Ren, Y. Zhang, M. Zhang, Y. Liu, D. Zhang, X. Gong, Z. Feng, J. Tang, Y. Chang, J. Zheng, Fundamentals of cross-seeding of amyloid proteins: an introduction, J. Mater. Chem. B 7 (2019) 7267–7282. [81] X. Zhang, Z. Fu, L. Meng, M. He, Z. Zhang, The early events that initiate bamyloid aggregation in Alzheimer’s disease, Front. Aging Neurosci. 10 (2018) 359. [82] J. Seeliger, K. Weise, N. Opitz, R. Winter, The effect of Aβ on IAPP aggregation in the presence of an isolated b-cell membrane, J. Mol. Biol. 421 (2012) 348–363. [83] Y. Liu, B. Ren, Y. Zhang, Y. Sun, Y. Chang, G. Liang, L. Xu, J. Zheng, Molecular simulation aspects of amyloid peptides at membrane interface, BBABiomembranes 1860 (2018) 1906–1916. [84] S.A. Jayasinghe, R. Langen, Membrane interaction of islet amyloid polypeptide, BBA-Biomembranes 1768 (2007) 2002–2009. [85] S.M. Butterfield, H.A. Lashuel, Amyloidogenic protein–membrane interactions: mechanistic insight from model systems, Angew. Chem. Int. Edit. 49 (2010) 5628–5654. [86] M. Zhang, J. Zhao, J. Zheng, Molecular understanding of a potential functional link between antimicrobial and amyloid peptides, Soft Matter 10 (2014) 7425– 7451. [87] L. D’Urso, M. Condorelli, O. Puglisi, C. Tempra, F. Lolicato, G. Compagnini, C. La Rosa, Detection and characterization at nM concentration of oligomers formed by hIAPP, Aβ (1–40) and their equimolar mixture using SERS and MD simulations, Phys. Chem. Chem. Phys. 20 (2018) 20588–20596. [88] M. Bakou, K. Hille, M. Kracklauer, A. Spanopoulou, C.V. Frost, E. Malideli, L.-M. Yan, A. Caporale, M. Zacharias, A. Kapurniotu, Key aromatic/hydrophobic amino acids controlling a cross-amyloid peptide interaction versus amyloid self-assembly, J. Biol. Chem. 292 (2017) 14587–14602. [89] G. Liang, J. Zhao, X. Yu, J. Zheng, Comparative molecular dynamics study of human islet amyloid polypeptide (IAPP) and rat IAPP oligomers, Biochemistry 52 (2013) 1089–1100. [90] E.J. Alred, E.G. Scheele, W.M. Berhanu, U.H. Hansmann, Stability of Iowa mutant and wild type Ab-peptide aggregates, J. Chem. Phys. 141 (2014) 175101. [91] M. Ahmed, J. Davis, D. Aucoin, T. Sato, S. Ahuja, S. Aimoto, J.I. Elliott, W.E. Van Nostrand, S.O. Smith, Structural conversion of neurotoxic amyloid-b1-42 oligomers to fibrils, Nat. Struct. Mol. Biol. 17 (2010) 561–567. [92] G. Bitan, M.D. Kirkitadze, A. Lomakin, S.S. Vollers, G.B. Benedek, D.B. Teplow, Amyloid beta -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways, P. Natl Acad. Sci. U.S.A. 100 (2003) 330–335. [93] B. Urbanc, L. Cruz, S. Yun, S.V. Buldyrev, G. Bitan, D.B. Teplow, H.E. Stanley, In silico study of amyloid {beta}-protein folding and oligomerization, P. Natl Acad. Sci. U.S.A. 101 (2004) 17345–17350. [94] Y. Miller, B. Ma, R. Nussinov, Polymorphism in Alzheimer Abeta amyloid organization reflects conformational selection in a rugged energy landscape, Chem. Rev. 110 (2010) 4820–4838. |