[1] Z. Chi, Z.P. Wang, G.Y. Wang, I. Khan, Z.M. Chi, Microbial biosynthesis and secretion of L-malic acid and its applications, Crit. Rev. Biotechnol. 36 (2016) 99–107. [2] X. Yin, J.H. Li, H.D. Shin, G.C. Du, L. Liu, J. Chen, Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects, Biotechnol. Adv. 33 (2015) 830–841. [3] T. Werpy, G. Petersen, Top value added chemicals from biomass: I. results of screening for potential candidates from sugars and synthesis gas. United States: N. p., 2004, https://doi.org/10.2172/15008859. [4] M. Sauer, D. Porro, D. Mattanovich, P. Branduardi, Malic acid production from renewables, Trends Biotechnol. 26 (2008) 100–108. [5] A. Kövilein, C. Kubisch, L.Y. Cai, K. Ochsenreither, Malic acid production from renewables: a review, J. Chem. Technol. Biot. 95 (2020) 513–526. [6] S. Somasundaram, G.T. Eom, S.H. Hong, Efficient malate production in Escherichia coli using a synthetic scaffold protein complex, Appl. Biochem. Biotechnol. 184 (2017) 1308–1318. [7] I. Goldberg, J.S. Rokem, O. Pines, Organic acids: old metabolites, new themes, J. Chem. Technol. Biot. 81 (2006) 1601–1611. [8] R.A. Sheldon, Green chemistry and resource efficiency: towards a green economy, Green Chem. 18 (2016) 3180–3183. [9] S. Choi, C.W. Song, J.H. Shin, S.Y. Lee, Biorefineries for the production of top building block chemicals and their derivatives, Metab. Eng. 28 (2015) 223–239. [10] S. Alonso, M. Rendueles, M. Diaz, Microbial production of specialty organic acids from renewable and waste materials, Crit. Rev. Biotechnol. 35 (2015) 497–513. [11] Y.J. Liu, J. Zhang, G.Z. Cui, Q. Cui, Current progress of targetron technology: development, improvement and application in metabolic engineering, Biotechnol. J. 10 (2015) 855–865. [12] J. Liu, J. Li, H.D. Shin, L. Liu, G. Du, J. Chen, Protein and metabolic engineering for the production of organic acids, Bioresour. Technol. 239 (2017) 412–421. [13] E. Battat, Y. Peleg, A. Bercovitz, J.S. Rokem, I. Goldberg, Optimization of Lmalate production by Aspergillus flavus in a stirred fermentor, Biotechnol. Bioeng. 37 (1991) 1108–1116. [14] Z.P. Wang, G.Y. Wang, I. Khan, Z.M. Chi, High-level production of calcium malate from glucose by Penicillium sclerotiorum K302, Bioresour. Technol. 143 (2013) 674–677. [15] I. Khan, K. Nazir, Z.P. Wang, G.L. Liu, Z.M. Chi, Calcium malate overproduction by Penicillium viticola 152 using the medium containing corn steep liquor, Appl. Microbiol. Biotechnol. 98 (2014) 1539–1546. [16] R.M. Zelle, E. Hulster, W.A. Winden, P. Waard, C. Dijkema, A.A. Winkler, J.M. Geertman, J.P. Dijken, J.T. Pronk, A.J. Maris, Malate production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export, Appl. Environ. Microbiol. 74 (2008) 2766–2777. [17] S.H. Brown, L. Bashkirova, R. Berka, T. Chandler, T. Doty, K. McCall, M. McCulloch, S. McFarland, S. Thompson, D. Yaver, A. Berry, Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of Lmalate, Appl. Microbiol. Biotechnol. 97 (2013) 8903–8912. [18] J. Liu, Z. Xie, H.D. Shin, J. Li, G. Du, J. Chen, L. Liu, Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate, J. Biotechnol. 253 (2017) 1–9. [19] J.J. Liu, J.H. Li, Y.F. Liu, H.D. Shin, R. Ledesma-Amaro, G.C. Du, J. Chen, L. Liu, Synergistic rewiring of carbon metabolism and redox metabolism in cytoplasm and mitochondria of Aspergillus oryzae for increased L-malate production, ACS Synth. Biol. 7 (2018) 2139–2147. [20] X. Chen, G. Xu, N. Xu, W. Zou, P. Zhu, L. Liu, J. Chen, Metabolic engineering of Torulopsis glabrata for malate production, Metab. Eng. 19 (2013) 10–16. [21] X. Chen, Y. Wang, X. Dong, G. Hu, L. Liu, Engineering rTCA pathway and C4-dicarboxylate transporter for L-malate production, Appl. Microbiol. Biotechnol. 101 (2017) 4041–4052. [22] S.Y. Moon, S.H. Hong, T.Y. Kim, S.Y. Lee, Metabolic engineering of Escherichia coli for the production of malate, Biochem. Eng. J. 40 (2008) 312–320. [23] X. Zhang, X. Wang, K.T. Shanmugam, L.O. Ingram, L-malate production by metabolically engineered Escherichia coli, Appl. Environ. Microbiol. 77 (2011) 427–434. [24] L. Mu, J. Wen, Engineered Bacillus subtilis 168 produces L-malate by heterologous biosynthesis pathway construction and lactate dehydrogenase deletion, World J. Microbiol. Biotechnol. 29 (2013) 33–41. [25] H. Negoro, A. Kotaka, K. Matsumura, H. Tsutsumi, Y. Hata, Enhancement of malate-production and increase in sensitivity to dimethyl succinate by mutation of the VID24 gene in Saccharomyces cerevisiae, J. Biosci. Bioeng. 121 (2016) 665–671. [26] I. Martinez, H. Gao, G.N. Bennett, K.Y. San, High yield production of four-carbon dicarboxylic acids by metabolically engineered Escherichia coli, J. Ind. Microbiol. Biotechnol. 45 (2018) 53–60. [27] X. Dong, X. Chen, Y. Qian, Y. Wang, L. Wang, W. Qiao, L. Liu, Metabolic engineering of Escherichia coli W3110 to produce L-malate, Biotechnol. Bioeng. 114 (2017) 656–664. [28] C. Gao, S. Wang, G. Hu, L. Guo, X. Chen, P. Xu, L. Liu, Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning, Biotechnol. Bioeng. 115 (2018) 661–672. [29] X. Zou, Y. Zhou, S.T. Yang, Production of polymalate and malate by Aureobasidium pullulans fermentation and acid hydrolysis, Biotechnol. Bioeng. 110 (2013) 2105–2113. [30] T. Zambanini, E. Sarikaya, W. Kleineberg, J.M. Buescher, G. Meurer, N. Wierckx, L.M. Blank, Efficient malate production from glycerol with Ustilago trichophora TZ1, Biotechnol. Biofuels 9 (2016) 67. [31] K. Ochsenreither, C. Fischer, A. Neumann, C. Syldatk, Process characterization and influence of alternative carbon sources and carbon-to-nitrogen ratio on organic acid production by Aspergillus oryzae DSM1863, Appl. Microbiol. Biotechnol. 98 (2014) 5449–5460. [32] J. Iyyappan, G. Baskar, B. Bharathiraja, R. Saravanathamizhan, Malic acid production from biodiesel derived crude glycerol using morphologically controlled Aspergillus Niger in batch fermentation, Bioresour. Technol. 269 (2018) 393–399. [33] T.P. West, Malate production from thin stillage by Aspergillus species, Biotechnol. Lett. 33 (2011) 2463–2467. [34] C. Cheng, Y. Zhou, M. Lin, P. Wei, S.T. Yang, Polymalate fermentation by Aureobasidium pullulans for malate production from soybean hull and soy molasses: fermentation kinetics and economic analysis, Bioresour. Technol. 223 (2017) 166–174. [35] Y. Deng, Y. Mao, X. Zhang, Metabolic engineering of a laboratory-evolved Thermobifida fusca muC strain for malate production on cellulose and minimal treated lignocellulosic biomass, Biotechnol. Prog. 32 (2016) 14–20. [36] X. Zou, J. Yang, X. Tian, M.J. Guo, Z.H. Li, Y.Z. Li, Production of polymalate and malate from xylose and corncob hydrolysate by a novel Aureobasidium pullulans YJ 6–11 strain, Process Biochem. 51 (2016) 16–23. [37] X.J. Li, Y. Liu, Y. Yang, H. Zhang, H.L. Wang, Y. Wu, M. Zhang, T. Sun, J.S. Cheng, X.F. Wu, L.J. Pan, S.T. Jiang, H.W. Wu, High levels of malate production by the bioconversion of corn straw hydrolyte using an isolated Rhizopus delemar strain, Biotechnol. Biopro. 19 (2014) 478–492. [38] S. Dörsam, J. Fesseler, O. Gorte, T. Hahn, S. Zibek, C. Syldatk, K. Ochsenreither, Sustainable carbon sources for microbial organic acid production with filamentous fungi, Biotechnol. Biofuels 10 (2017) 242. [39] N. Vivek, R. Sindhu, A. Madhavan, A.J. Anju, E. Castro, V. Faraco, A. Pandey, P. Binod, Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate-Metabolic aspects, challenges and possibilities: An overview, Bioresour. Technol. 239 (2017) 507–517. [40] C. Li, K.L. Lesnik, H. Liu, Microbial conversion of waste glycerol from biodiesel production into value-added products, Energies 6 (2013) 4739–4768. [41] P. Anand, R.K. Saxena, A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii, N. Biotechnol. 29 (2012) 199–205. [42] M. Saini, Z.W. Wang, C.J. Chiang, Y.P. Chao, Metabolic engineering of Escherichia coli for production of n-butanol from crude glycerol, Biotechnol. Biofuels 10 (2017) 173. [43] J.M. Clomburg, R. Gonzalez, Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals, Trends Biotechnol. 31 (2013) 20–28. [44] Z. Cui, C. Gao, J. Li, J. Hou, C.S.K. Lin, Q. Qi, Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH, Metab. Eng. 42 (2017) 126–133. [45] F. Xin, C. Wang, W. Dong, W. Zhang, H. Wu, J. Ma, M. Jiang, Comprehensive investigations of biobutanol production by a non-acetone and 1,3-propanediol generating Clostridium strain from glycerol and polysaccharides, Biotechnol. Biofuels 9 (2016) 220. [46] Q. Li, H. Wu, Z. Li, Q. Ye, Enhanced succinate production from glycerol by engineered Escherichia coli strains, Bioresour. Technol. 218 (2016) 217–223. [47] N. Li, B. Zhang, Z. Wang, Y.J. Tang, T. Chen, X. Zhao, Engineering Escherichia coli for fumaric acid production from glycerol, Bioresour. Technol. 174 (2014) 81–87. [48] F. Yang, M.A. Hanna, R. Sun, Value-added uses for crude glycerol–a byproduct of biodiesel production, Biotechnol. Biofuels 5 (2012) 13. [49] T. Zambanini, H.H. Tehrani, E. Geiser, C.K. Sonntag, J.M. Buescher, G. Meurer, N. Wierckx, L.M. Blank, Metabolic engineering of Ustilago trichophora TZ1 for improved malic acid production, Metab. Eng. Commun. 4 (2017) 12–21. [50] T.P. West, Fungal biotransformation of crude glycerol into malic acid, Z. Naturforsch. C 70 (2015) 165–167. [51] N. Sarkar, S.K. Ghosh, S. Bannerjee, K. Aikat, Bioethanol production from agricultural wastes: an overview, Renew. Energy 37 (2012) 19–27. [52] M.J. Taherzadeh, K. Karimi, Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review, BioResources 2 (2007) 472–499. [53] Y. Kim, R. Hendrickson, N.S. Mosier, M.R. Ladisch, B. Bals, V. Balan, B.E. Dale, B. S. Dien, M.A. Cotta, Effect of compositional variability of distillers’ grains on cellulosic ethanol production, Bioresour. Technol. 101 (2010) 5385–5393. [54] Y. Kim, N.S. Mosier, R. Hendrickson, T. Ezeji, H. Blaschek, B. Dien, M. Cotta, B. Dale, M.R. Ladisch, Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage, Bioresour. Technol. 99 (2008) 5165–5176. [55] T.P. West, Microbial production of malic acid from biofuel-related coproducts and biomass, Fermentation 3 (2017) 14. [56] F. Fao, Online Statistical Service, Food and Agriculture Organization of the United Nations, 2012, http://www.fao.org/faostat/en/#data. [57] P. Lakshmanan, R.J. Geijskes, K.S. Aitken, C.L.P. Grof, G.D. Bonnett, G.R. Smith, Sugarcane biotechnology: the challenges and opportunities, Vitro Cell. Dev-PL 41 (2005) 345–363. [58] M.B. Doelle, H.W. Doelle, Sugar-cane molasses fermentation by Zymomonas mobilis, Appl. Microbiol. Biot. 33 (1990) 31–35. [59] J.F. Ma, F. Li, R.M. Liu, L.Y. Liang, Y.L. Ji, C. Wei, M. Jiang, H.H. Jia, P.K. Ouyang, Succinic acid production from sucrose and molasses by metabolically engineered E. coli using a cell surface display system, Biochem. Eng. J. 91 (2014) 240–249. [60] J. Feng, J. Yang, W. Yang, J. Chen, M. Jiang, X. Zou, Metabolome-and genomescale model analyses for engineering of Aureobasidium pullulans to enhance polymalate and malate production from sugarcane molasses, Biotechnol. Biofuels 11 (2018) 94. [61] F.W. Bai, W.A. Anderson, M. Moo-Young, Ethanol fermentation technologies from sugar and starch feedstocks, Biotechnol. Adv. 26 (2008) 89–105. [62] M. Talacuece, F. Justino, R. Rodrigues, M. Flores, J. Nascimento, E. Santos, Modeling of soybean under present and future climates in Mozambique, Climate 4 (2016) 31. [63] J. Dong, Y. Du, Y. Zhou, S.T. Yang, Butanol production from soybean hull and soy molasses by acetone-butanol-ethanol fermentation, ACS Symposium Series 1178 (2014) 25–41. [64] M.L. Zhang, Y.T. Fan, Y. Xing, C.M. Pan, G.S. Zhang, J.J. Lay, Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures, Biomass Bioenerg. 31 (2007) 250–254. [65] V. Menon, M. Rao, Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept, Prog. Energ. Combust. 38 (2012) 522–550. [66] V.B. Agbor, N. Cicek, R. Sparling, A. Berlin, D.B. Levin, Biomass pretreatment: fundamentals toward application, Biotechnol. Adv. 29 (2011) 675–685. [67] J.K. Saini, R. Saini, L. Tewari, Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments, 3 Biotech. 5 (2015) 337–353. [68] Y. Li, B. Huang, H. Wu, Z. Li, Q. Ye, Y.P. Zhang, Production of succinate from acetate by metabolically engineered Escherichia coli, ACS Synth. Biol. 5 (2016) 1299–1307. [69] P. Zheng, L. Fang, Y. Xu, J.J. Dong, Y. Ni, Z.H. Sun, Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes, Bioresour. Technol. 101 (2010) 7889–7894. [70] S. Sokhansanj, A. Turhollow, J. Cushman, J. Cundiff, Engineering aspects of collecting corn stover for bioenergy, Biomass Bioenerg. 23 (2002) 347–355. [71] M.T. Agler, B.A. Wrenn, S.H. Zinder, L.T. Angenent, Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform, Trends Biotechnol. 29 (2011) 70–78. [72] M.E. Himmel, S.Y. Ding, D.K. Johnson, W.S. Adney, M.R. Nimlos, J.W. Brady, T.D. Foust, Biomass recalcitrance: engineering plants and enzymes for biofuels production, Science 315 (2007) 804–807. [73] X. Zou, Y. Wang, G. Tu, Z. Zan, X. Wu, Adaptation and transcriptome analysis of Aureobasidium pullulans in corncob hydrolysate for increased inhibitor tolerance to malate production, PLoS One 10 (3) (2015) e0121416. [74] A.R. Prazeres, F. Carvalho, J. Rivas, Cheese whey management: a review, J. Environ. Manage. 110 (2012) 48–68. [75] R. Moreno, A. Escapa, J. Cara, B. Carracedo, X. Gómez, A two-stage process for hydrogen production from cheese whey: integration of dark fermentation and biocatalyzed electrolysis, Int. J. Hydrogen Energ. 40 (2015) 168–175. [76] L. Jiang, H. Cui, L. Zhu, Y. Hu, X. Xu, S. Li, H. Huang, Enhanced propionic acid production from whey lactose with immobilized Propionibacterium acidipropionici and the role of trehalose synthesis in acid tolerance, Green Chem. 17 (2015) 250–259. [77] Y.H. Seo, M. Sung, J.I. Han, Lactulose production from cheese whey using recyclable catalyst ammonium carbonate, Food Chem. 197 (2016) 664–669. [78] A. Matsushika, H. Inoue, T. Kodaki, S. Sawayama, Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives, Appl. Microbiol. Biot. 84 (2009) 37–53. [79] R. Ravindran, A.K. Jaiswal, Exploitation of food industry waste for high-value products, Trends Biotechnol. 34 (2016) 58–69. [80] N. Soltani, A. Bahrami, M.I. Pech-Canul, L.A. González, Review on the physicochemical treatments of rice husk for production of advanced materials, Chem. Eng. J. 264 (2015) 899–935. [81] G. Wang, L. Tan, Z.Y. Sun, Z.X. Gou, Y.Q. Tang, K. Kida, Production of bioethanol from rice straw by simultaneous saccharification and fermentation of whole pretreated slurry using Saccharomyces cerevisiae KF-7, Environ. Prog. Sustain. 34 (2015) 582–588. [82] A. Abraham, A.K. Mathew, R. Sindhu, A. Pandey, P. Binod, Potential of rice straw for bio-refining: an overview, Bioresour. Technol. 215 (2016) 29–36. [83] X. Chen, Y. Zhang, Y. Gu, Z. Liu, Z. Shen, H. Chu, X. Zhou, Enhancing methane production from rice straw by extrusion pretreatment, Appl. Energ. 122 (2014) 34–41. [84] M. Hogan, J. Otterstedt, R. Morin, J. Wilde, Biomass for heat and poweropportunity and economics, European Climate Foundation, Södra, Sveaskog, Vattenfall, report, The Hague, 2010. [85] A.A. Koutinas, A. Vlysidis, D. Pleissner, N. Kopsahelis, I. Lopez Garcia, I.K. Kookos, S. Papanikolaou, T.H. Kwan, C.S. Lin, Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers, Chem. Soc. Rev. 43 (2014) 2587–2627. [86] J. Rodríguez-López, A.J. Sánchez, D.M. Gómez, A. Romaní, J.C. Parajó, Fermentative production of fumaric acid from Eucalyptus globulus wood hydrolyzates, J. Chem. Technol. Biot. 87 (2012) 1036–1040. [87] D.Y. Kim, S.C. Yim, P.C. Lee, W.G. Lee, S.Y. Lee, H.N. Chang, Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E, Enzyme Microb. Tech. 35 (2004) 648–653. [88] A. Demirbas, Waste management, waste resource facilities and waste conversion processes, Energ. Convers. Manage. 52 (2011) 1280–1287. [89] S. Banerjee, S. Mudliar, R. Sen, B. Giri, D. Satpute, T. Chakrabarti, R.A. Pandey, Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies, Biofuel Bioprod. Bior. 4 (2010) 77–93. [90] C.A. Cardona, J.A. Quintero, I.C. Paz, Production of bioethanol from sugarcane bagasse: Status and perspectives, Bioresour. Technol. 101 (2010) 4754–4766. [91] R.M. Liu, L.Y. Liang, W.J. Cao, M.K. Wu, K.Q. Chen, J.F. Ma, M. Jiang, P. Wei, P.K. Ouyang, Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source, Bioresour. Technol. 135 (2013) 574–577. |