[1] Chinese National Development and Reform Commission. Green Efficient Refrigeration Action Plan, 2019. [2] M. Isaac, D.P. van Vuuren, Modeling global residential sector energy demand for heating and air conditioning in the context of climate change, Energ. Policy 37(2009) 507-521. [3] T. Zhang, X. Liu, Y. Jiang, Development of temperature and humidity independent control (THIC) air-conditioning systems in China-A review, Renew. Sust. Energ. Rev. 29(2014) 793-803. [4] X.J. Zhang, F. Xiao, S. Li, Performance study of a constant temperature and humidity air-conditioning system with temperature and humidity independent control device, Energ. Build. 49(2012) 640-646. [5] L. Zhao, C. Jianbo, Y. Haizhao, C. Lingchuang, The development and experimental performance evaluation on a novel household variable refrigerant flow based temperature humidity independently controlled radiant air conditioning system, Appl. Therm. Eng. 122(2017) 245-252. [6] R. Qi, C. Dong, L. Zhang, A review of liquid desiccant air dehumidification:From system to material manipulations, Energ. Build. 215(2020) 109897. [7] M. Qu, O. Abdelaziz, Z.M. Gao, H.X. Yin, Isothermal membrane-based air dehumidification:A comprehensive review, Renew. Sust. Energ. Rev. 82(2018) 4060-4069. [8] D.B. Thuan, F. Chen, A. Nida, K.J. Chua, K.C. Ng, Experimental and modeling analysis of membrane-based air dehumidification, Sep. Purif. Technol. 144(2015) 114-122. [9] J. Woods, Membrane processes for heating, ventilation, and air conditioning, Renew. Sust. Energ. Rev. 33(2014) 290-304. [10] L. Chun, G. Gong, P. Peng, W. Li, X. Fang, Research on phase equilibrium effect and curve vacuum membrane-based dehumidification device, Int. J. Heat Mass Transf. 156(2020) 119879. [11] G. Gong, J. Liu, X. Mei, Investigation of heat load calculation for air carrying energy radiant air-conditioning system, Energ. Build. 138(2017) 193-205. [12] P. Peng, G. Gong, X. Mei, J. Liu, F. Wu, Investigation on thermal comfort of air carrying energy radiant air-conditioning system in south-central China, Energ. Build. 182(2019) 51-60. [13] K.J. Chua, S.K. Chou, M.R. Islam, On the experimental study of a hybrid dehumidifier comprising membrane and composite desiccants, Appl. Energ. 220(2018) 934-943. [14] P. Scovazzo, R. MacNeill, Membrane module design, construction, and testing for vacuum sweep dehumidification (VSD):Part I, Prototype development and module design, J. Membr. Sci. 576(2019) 96-107. [15] C.Z. Liang, T. Chung, Robust thin film composite PDMS/PAN hollow fiber membranes for water vapor removal from humid air and gases, Sep. Purif. Technol. 202(2018) 345-356. [16] T.D. Bui, Y. Wong, M.R. Islam, K.J. Chua, On the theoretical and experimental energy efficiency analyses of a vacuum-based dehumidification membrane, J. Membr. Sci. 539(2017) 76-87. [17] B. Zhao, W.F. Yong, T. Chung, Haze particles removal and thermally induced membrane dehumidification system, Sep. Purif. Technol. 185(2017) 24-32. [18] A.A. Bukshaisha, B.M. Fronk, Simulation of membrane heat pump system performance for space cooling, Int. J. Refrig. 99(2019) 371-381. [19] H.T. El-Dessouky, H.M. Ettouney, W. Bouhamra, A novel air conditioning system:membrane air drying and evaporative cooling, Chem. Eng. Res. Des. 78(2000) 999-1009. [20] Navigant Consulting, Inc. Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies, Non-Vapor Compression HVAC Report, (2014) 94-95. [21] A.M. Abou-Elanwar, Y.M. Shirke, P.G. Ingole, W. Choi, H. Lee, S.U. Hong, et al., Nanocomposite hollow fiber membranes with recyclable -cyclodextrin encapsulated magnetite nanoparticles for water vapor separation, J. Mater. Chem. A 6(2018) 24569-24579. [22] A. Kudasheva, Y. Liu, A. Ito, Aqueous salt solution liquid membranes, supported by nanoparticles, for water extraction from the atmosphere via air dehumidification, J. Chem. Technol. Biot. 93(2018) 2851-2859. [23] T. Puspasari, F.H. Akhtar, W. Ogieglo, O. Alharbi, K.V. Peinemann, High dehumidification performance of amorphous cellulose composite membranes prepared from trimethylsilyl cellulose, J. Mater. Chem. A 6(2018) 9271-9279. [24] F.H. Akhtar, M. Kumar, K. Peinemann, Pebax (R) 1657/Graphene oxide composite membranes for improved water vapor separation, J. Membr. Sci. 525(2017) 187-194. [25] T.D. Bui, Y. Wong, K. Thu, S.J. Oh, M.K. Ja, K.C. Ng, I. Raisul, K.J. Chua, Effect of hygroscopic materials on water vapor permeation and dehumidification performance of poly(vinyl alcohol) membranes, J. Appl. Polym. Sci. 134(2019) 44795. [26] A. Kudasheva, T. Kamiya, Y. Hirota, A. Ito, Dehumidification of air using liquid membranes with ionic liquids, J. Membr. Sci. 499(2016) 379-385. [27] D.T. Bui, M.K. Ja, J.M. Gordon, K.C. Ng, K.J. Chua, A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification, Energy 132(2017) 106-115. [28] B. Zhao, L. Wang, T. Chung, Enhanced membrane systems to harvest water and provide comfortable air via dehumidification & moisture condensation, Sep. Purif. Technol. 220(2019) 136-144. [29] B. Zhao, N. Peng, C. Liang, W.F. Yong, T. Chung, Hollow fiber membrane dehumidification device for air conditioning system, Membranes 5(2015) 722-738. [30] K. Thu, S. Mitra, B.B. Saha, S.S. Murthy, Thermodynamic feasibility evaluation of hybrid dehumidification-mechanical vapour compression systems, Appl. Energ. 213(2018) 31-44. [31] T. Chen, L. Norford, Energy performance of next-generation dedicated outdoor air cooling systems in low-energy building operations, Energ. Build. 209(2020) 109677. [32] W. Ma, S. Fang, B. Su, X. Xue, M. Li, Second-law-based analysis of vaporcompression refrigeration cycles:Analytical equations for COP and new insights into features of refrigerants, Energ. Convers. Manage. 138(2017) 426-434. [33] S. Yang, W. Tao, Heat Transfer (in Chinese), fourth ed., Higher Education Press, Beijing, (2006) 260-261. [34] Honeywell, Honeywell Refrigerant Product Catalog, https://www.honeywell.com.cn/refrigerants/retrofit-resources (accessed:20191126, 2019). [35] Y. Shin, W. Liu, B. Schwenzer, S. Manandhar, D. Chase-Woods, M.H. Engelhard, R. Devanthan, L.S. Fifield, W.D. Bennett, B. Ginovska, D.W. Gotthold, Graphene oxide membranes with high permeability and selectivity for dehumidification of air, Carbon 106(2016) 164-170. [36] W.F. Yong, Y.X. Ho, T. Chung, Nanoparticles embedded in amphiphilic membranes for carbon dioxide separation and dehumidification, ChemSusChem 10(2017) 4046-4055. |