中国化学工程学报 ›› 2021, Vol. 35 ›› Issue (7): 17-43.DOI: 10.1016/j.cjche.2020.11.028
Peiyu Zhao1,2, Guojie Zhang2, Huangyu Yan2, Yuqiong Zhao2
收稿日期:
2020-06-07
修回日期:
2020-10-06
出版日期:
2021-07-28
发布日期:
2021-09-30
通讯作者:
Guojie Zhang
基金资助:
Peiyu Zhao1,2, Guojie Zhang2, Huangyu Yan2, Yuqiong Zhao2
Received:
2020-06-07
Revised:
2020-10-06
Online:
2021-07-28
Published:
2021-09-30
Contact:
Guojie Zhang
Supported by:
摘要: Global warming and associated global climate change have led to serious efforts towards reducing CO2 emissions through the CO2 capture from the major emission sources. CO2 capture using the amine functionalized adsorbents is regard as a direct and effective way to reducing CO2 emissions due to their large CO2 adsorption amount, excellent CO2 adsorption selectivity and lower energy requirements for adsorbent regeneration. Moreover, large number of achievements on the amine functionalized solid adsorbent have been recorded for the enhanced CO2 capture in the past few years. In view of this, we review and analyze the recent advances in amine functionalized solid adsorbents prepared with different supporting materials including mesoporous silica, zeolite, porous carbon materials, metal organic frameworks(MOF) and other composite porous materials. In addition, amine functionalized solid adsorbents derived from waste resources are also reviewed because of the large number demand for cost-effective carbon dioxide adsorbents and the processing needs of waste resources. Considering the importance of the stability of the adsorbent in practical applications, advanced research in the capture cycle stability has also been summarized and analyzed. Finally, we summarize the review and offer the recommendations for the development of amine-based solid adsorbents for carbon dioxide capture.
Peiyu Zhao, Guojie Zhang, Huangyu Yan, Yuqiong Zhao. The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: Analysis review[J]. 中国化学工程学报, 2021, 35(7): 17-43.
Peiyu Zhao, Guojie Zhang, Huangyu Yan, Yuqiong Zhao. The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: Analysis review[J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 17-43.
[1] N. Nityashree, G.V. Manohara, M.M. Maroto-Valer, S. Garcia, Advanced hightemperature CO2 sorbents with improved long-term cycling stability, ACS Appl. Mater. Interfaces 12(2020) 33765-33774. [2] C. Song, Q. Liu, N. Ji, S. Deng, J. Zhao, Y. Li, Y. Song, H. Li, Alternative pathways for efficient CO2 capture by hybrid processes-A review, Renew. Sust. Energ. Rev. 82(2018) 215-231. [3] A. Dey, S.K. Dash, B. Mandal, Elucidating the performance of (N-(3-aminopropyl)-1,3-propanediamine) activated (1-dimethylamino-2-propanol) as a novel amine formulation for post combustion carbon dioxide capture, Fuel 277(2020) 118209-118220. [4] Q. Liu, Y. Shi, W. Zhong, A. Yu, Co-firing of coal and biomass in oxy-fuel fluidized bed for CO2 capture:A review of recent advances, Chinese J. Chem. Eng. 27(2019) 2261-2272. [5] C. Rosu, S.H. Pang, A.R. Sujan, M.A. Sakwa-Novak, E.W. Ping, C.W. Jones, Effect of extended aging and oxidation on linear poly(propylenimine)-mesoporous silica composites for CO2 capture from simulated air and flue gas streams, ACS Appl. Mater. Interfaces 12(2020) 38085-38097. [6] Y. Yuan, H. You, L. Ricardez-Sandoval, Recent advances on first-principles modeling for the design of materials in CO2 capture technologies, Chinese J. Chem. Eng. 27(2019) 1554-1565. [7] A. Hemmati, H. Rashidi, Mass transfer investigation and operational sensitivity analysis of aminebased industrial CO2 capture plant, Chinese J. Chem. Eng. 27(2019) 534-543. [8] N.A. Rashidi, S. Yusup, An overview of activated carbons utilization for the post-combustion carbon dioxide capture, J. CO2 Util. 13(2016) 1-16. [9] B.P. Spigarelli, S. Komar Kawatra, Opportunities and challenges in carbon dioxide capture, J. CO2 Util. 1(2013) 69-87. [10] H. Yu, Recent developments in aqueous ammonia-based post-combustion CO2 capture technologies, Chinese J. Chem. Eng. 26(2018) 2255-2265. [11] L. Ghalib, A. Abdulkareem, B.S. Ali, S. Mazari, Modeling the rate of corrosion of carbon steel using activated diethanolamine solutions for CO2 absorption, Chinese J. Chem. Eng. 28(2020) 2099-2110. [12] Z.L. Ooi, P.Y. Tan, L.S. Tan, S. Yeap, Amine-based solvent for CO2 absorption and its impact on carbon steel corrosion:A perspective review, Chinese J. Chem. Eng. 28(2020) 1357-1367. [13] F. Lou, A. Zhang, G. Zhang, L. Ren, X. Guo, C. Song, Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure, Appl. Energy 264(2020) 114637-114648. [14] D. Zabiegaj, M. Caccia, M.E. Casco, F. Ravera, J. Narciso, Synthesis of carbon monoliths with a tailored hierarchical pore structure for selective CO2 capture, J. CO2 Util. 26(2018) 36-44. [15] C. Chen, S. Zhang, K.H. Row, W.S. Ahn, Amine-silica composites for CO2 capture:A short review, J. Energy Chem. 26(2017) 868-880. [16] L. Nie, Y. Mu, J. Jin, J. Chen, J. Mi, Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas, Chinese J. Chem. Eng. 26(2018) 2303-2317. [17] C. Chen, S. Bhattacharjee, Trimodal nanoporous silica as a support for aminebased CO2 adsorbents:Improvement in adsorption capacity and kinetics, Appl. Surf. Sci. 396(2017) 1515-1519. [18] J. Jiao, J. Cao, Y. Xia, L. Zhao, Improvement of adsorbent materials for CO2 capture by amine functionalized mesoporous silica with worm-hole framework structure, Chem. Eng. J. 306(2016) 9-16. [19] X. Guo, L. Ding, K. Kanamori, K. Nakanishi, H. Yang, Functionalization of hierarchically porous silica monoliths with polyethyleneimine (PEI) for CO2 adsorption, Micropor. Mesopor. Mater. 245(2017) 51-57. [20] J. Wang, M. Wang, B. Zhao, W. Qiao, D. Long, L. Ling, Mesoporous carbonsupported solid amine sorbents for low-temperature carbon dioxide capture, Ind. Eng. Chem. Res. 52(2013) 5473-15444. [21] S.H. Chai, Z.M. Liu, K.H.S. Tan, S. Dai, Amine functionalization of microsized and nanosized mesoporous carbons for carbon dioxide capture, Ind. Eng. Chem. Res. 55(2016) 7355-7361. [22] X. Wang, D. Wang, M. Song, C. Xin, W. Zen, Tetraethylenepentamine-modified activated semicoke for CO2 capture from flue gas, Energy Fuels 31(2017) 3055-3061. [23] J. Yu, L.H. Xie, J.R. Li, Y. Ma, J.M. Seminario, P.B. Balbuena, CO2 capture and separations using MOFs:computational and experimental studies, Chem. Rev. 117(2017) 9674-9754. [24] X. Huang, J. Lu, W. Wang, X. Wei, J. Ding, Experimental and computational investigation of CO2 capture on amine grafted metal-organic framework NH2-MIL-101, Appl. Surf. Sci. 371(2016) 307-313. [25] J. Ge, L. Liu, L. Qiu, X. Jiang, Y. Shen, Facile synthesis of amine-functionalized MIL-53(Al) by ultrasound microwave method and application for CO2 capture, J. Porous Mater. 23(2016) 857-865. [26] J. Cheng, N. Liu, L. Hu, Y. Li, Y. Wang, J. Zhou, Polyethyleneimine entwine thermally-treated Zn/Co zeolitic imidazolate frameworks to enhance CO2 adsorption, Chem. Eng. J. 364(2019) 530-540. [27] X. Liu, F. Gao, J. Xu, L. Zhou, H. Liu, J. Hu, Zeolite@Mesoporous silicasupported-amine hybrids for the capture of CO2 in the presence of water, Micropor. Mesopor. Mater. 222(2016) 113-119. [28] H. Zhang, A. Goeppert, G.A. Olah, G.K. Surya Prakash, Remarkable effect of moisture on the CO2 adsorption of nano-silica supported linear and branched polyethylenimine, J. CO2 Util. 19(2017) 91-99. [29] Y. Kong, X. Shen, S. Cui, Amine hybrid zirconia/silica composite aerogel for low-concentration CO2 capture, Micropor. Mesopor. Mater. 236(2016) 269-276. [30] B. Dutcher, M. Fan, A.G. Russe, Amine-based CO2 capture technology development from the beginning of 2013-A review, ACS Appl. Mater. Interfaces 7(2015) 2137-2148. [31] Y. Han, G. Hwang, H. Kima, B.Z. Haznedaroglu, B. Lee, Amine-impregnated millimeter-sized spherical silica foams with hierarchical mesoporous-macroporous structure for CO2 capture, Chem. Eng. J. 259(2015) 653-662. [32] S. Gadipelli, H.A. Patel, Z. Guo, An ultrahigh pore volume drives up the amine stability and cyclic CO2 capacity of a solid-amine@carbon sorbent, Adv. Mater. 27(2015) 4903-4909. [33] H. Thakkar, S. Eastman, A. Hajari, A.A. Rownaghi, J.C. Knox, F. Rezae, 3Dprinted zeolite monoliths for CO2 removal from enclosed environments, ACS Appl. Mater. Interfaces 8(2016) 27753-27761. [34] H. Thakkar, S. Eastman, A.A. Mamoori, A. Hajari, A.A. Rownaghi, F. Rezaei, Formulation of aminosilica adsorbents into 3D-printed monoliths and evaluation of their CO2 capture performance, ACS Appl. Mater. Interfaces 9(8) (2017) 7489-7498. [35] W. Wang, J. Motuzas, X.S. Zhao, J.C. Diniz da Costa, Improved CO2 sorption in freeze-dried amine functionalized mesoporous silica sorbent, Ind. Eng. Chem. Res. 57(2018) 5653-5660. [36] S. Park, K. Choi, H. Yu, Y. Won, C. Kim, M. Choi, S.H. Cho, J.H. Lee, S.Y. Lee, J.S. Lee, Thermal stability enhanced tetraethylenepentamine/silica adsorbents for high performance CO2 capture, Ind. Eng. Chem. Res. 57(2018) 4632-4639. [37] C. Kim, W. Choi, M. Choi, SO2-resistant amine-containing CO2 adsorbent with a surface protection layer, ACS Appl. Mater. Interfaces 11(2019) 16586-16593. [38] M.J. Lashaki, S. Khiavib, A. Sayari, Stability of amine-functionalized CO2 adsorbents:a multifaceted puzzle, Chem. Soc. Rev. 48(2019) 3320-3405. [39] N. Rao, M. Wang, Z. Shang, Y. Hou, G. Fan, J. Li, CO2 adsorption by aminefunctionalized MCM-41:A comparison between impregnation and grafting modification methods, Energy Fuels 32(2018) 670-677. [40] X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture, Energy Fuels 16(2002) 1463-1469. [41] X. Zhao, Q. Cui, B. Wang, X. Yan, S. Singh, F. Zhang, X. Gao, Y. Li, Recent progress of amine modified sorbents for capturing CO2 from flue gas, Chinese J. Chem. Eng. 26(2018) 2292-2302. [42] X. Wang, X. Ma, C. Song, D.R. Locke, S. Siefert, R.E. Winansc, J. Möllmer, M. Lange, A. Möller, R. Gläser, Molecular basket sorbents polyethylenimine-SBA-15 for CO2 capture from flue gas:Characterization and sorption properties, Micropor. Mesopor. Mater. 169(2013) 103-111. [43] T. Gelles, S. Lawson, A. Rownaghi, F. Rezaei, Recent advances in development of amine functionalized adsorbents for CO2 capture, Adsorption 26(2020) 5-50. [44] E.S. Sanz-Pérez, A. Arencibia, G. Calleja, R. Sanz, Tuning the textural properties of HMS mesoporous silica. Functionalization towards CO2 adsorption, Micropor. Mesopor. Mater. 260(2018) 235-244. [45] Q. Lai, Z. Diao, L. Kong, H. Adidharma, M. Fan, Amine-impregnated silicic acid composite as an efficient adsorbent for CO2 capture, Appl. Energy 223(2018) 293-301. [46] C.H. Lee, D.H. Hyeon, H. Jung, W. Chung, D.H. Jo, D.K. Shin, S.H. Kim, Effects of pore structure and PEI impregnation on carbon dioxide adsorption by ZSM-5 zeolites, J. Ind. Eng. Chem. (2015) 251-256. [47] T.H. Pham, B.K. Lee, J. Kim, Novel improvement of CO2 adsorption capacity and selectivity by ethylene diamine-modifie d nano zeolite, J. Taiwan Inst. Chem. E 66(2016) 239-248. [48] J. Pokhrel, N. Bhoria, S. Anastasio, T. Tsoufis, D. Gournisc, G. Romanos, G.N. Karanikolos, CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions, Micropor. Mesopor. Mater. 267(2018) 53-67. [49] S.W. Choi, J. Tang, V.G. Polb, K. Lee, Pollen-derived porous carbon by KOH activation:Effect of physicochemical structure on CO2 adsorption, J. CO2 Util. 29(2019) 146-155. [50] H. Hu, T. Zhang, S. Yuan, S. Tang, Functionalization of multi-walled carbon nanotubes with phenylenediamine for enhanced CO2 adsorption, Adsorption 23(2017) 73-85. [51] R. Sanz, G. Calleja, A. Arencibia, E.S. Sanz-Perez, CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15, Appl. Surf. Sci. 256(2010) 5323-5328. [52] X. Yan, L. Zhang, Y. Zhang, G. Yang, Z. Yan, Amine-modified SBA-15:Effect of pore structure on the performance for CO2 capture, Ind. Eng. Chem. Res. 50(2011) 3220-3226. [53] S. Xian, F. Xu, C. Ma, Y. Wu, Q. Xia, H. Wang, Z. Li, Vapor-enhanced CO2 adsorption mechanism of composite PEI@ZIF-8 modified by polyethyleneimine for CO2/N2 separation, Chem. Eng. J. 280(2015) 363-369. [54] S. Loganathan, M. Tikmani, A.K. Ghoshal, Pore-expanded MCM-41 for CO2 adsorption:Experimental and isotherm modeling studies, Chem. Eng. J. 280(2015) 9-17. [55] S. Ahmed, A. Ramli, S. Yusup, Muhammad Farooq, Adsorption behavior of tetraethylenepentamine-functionalized Si-MCM-41 for CO2 adsorption, Chem. Eng. Res. Des. 122(2017) 33-42. [56] Y. Chua, J. Hou, C. Boyer, J.J. Richardsond, K. Liang, J. Xu, Biomimetic synthesis of coordination network materials:Recent advances in MOFs and MPNs, Appl. Mater. Today 10(2018) 93-105. [57] D.R. Kumar, C. Rosu, A.R. Sujan, M.A.S. Novak, E.W. Ping, C.W. Jones, Alkyl-aryl amine-rich molecules for CO2 removal via direct air capture, ACS Sustainable Chem. Eng. 8(2020) 10971-10982. [58] H. Fan, Z. Wu, Q. Xu, T. Sun, Flexible, amine-modified silica aerogel with enhanced carbon dioxide capture performance, J. Porous Mater. 23(2016) 131-137. [59] R. Sanz, G. Calleja, A. Arencibia, E.S. Sanz-Pére, CO2 uptake and adsorption kinetics of pore-expanded SBA-15 double-functionalized with amino groups, Energy Fuels 27(2013) 7637-7644. [60] X. Wang, L. Chen, Q. Guo, Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture, Chem. Eng. J. 260(2015) 573-581. [61] Z. Lin, J. Wei, L. Geng, D. Mei, L. Liao, A novel amine double functionalized composite strategy for CO2 adsorbent preparation using ZSM-5/KIT-6 composite as support, Energy Technol. 12(2018) 236-247. [62] S. Ahmed, A. Ramli, S. Yusup, Development of polyethyleniminefunctionalized mesoporous Si-MCM-41 for CO2 adsorption, Fuel Process. Technol. 167(2017) 622-630. [63] A.H. Gorji, Y. Yang, A. Sayari, Effect of the pore length on CO2 adsorption over amine-modified mesoporous silicas, Energy Fuels 25(2011) 4206-4210. [64] Z. Liu, Y. Teng, K. Zhang, H. Chen, Y. Yang, CO2 adsorption performance of different amine-based siliceous MCM-41 materials, J. Energy Chem. 24(2015) 322-330. [65] L. Zhang, X. Wang, M. Fujii, L. Yang, C. Song, CO2 capture over molecular basket sorbents:Effects of SiO2 supports and PEG additive, J. Energy Chem. 26(2017) 1030-1038. [66] L. Zhang, N. Zhan, Q. Jin, H. Liu, J. Hu, Impregnation of polyethylenimine in mesoporous multilamellar silica vesicles for CO2 capture:A kinetic study, Ind. Eng. Chem. Res. 55(2016) 5885-5891. [67] R. Kishor, A.K. Ghoshal, Amine-modified mesoporous silica for CO2 adsorption:The role of structural parameters, Ind. Eng. Chem. Res. 56(2017) 6078-6087. [68] J. Wang, D. Long, H. Zhou, Q. Chen, X. Liu, L. Ling, Surfactant promoted solid amine sorbents for CO2 capture, Energy Environ. Sci. 5(2012) 5742-5749. [69] F. Liu, K. Huang, L. Jiang, Promoted adsorption of CO2 on amine-impregnated adsorbents by functionalized ionic liquids, AIChE J. 64(2018) 3671-3680. [70] Q.T. Vu, H. Yamad, K. Yogo, Exploring the role of imidazoles in amineimpregnated mesoporous silica for CO2 capture, Ind. Eng. Chem. Res. 57(2018) 2638-2644. [71] J.T. Anyanwu, Y. Wang, R.T. Yang, Amine-grafted silica gels for CO2 capture including direct air capture, Ind. Eng. Chem. Res. 59(2020) 7072-7079. [72] M.J. Lashaki, A. Sayari, CO2 capture using triamine-grafted SBA-15:The impact of the support pore structure, Chem. Eng. J. 334(2018) 1260-1269. [73] K. Hori, T. Higuchi, Y. Aoki, M. Miyamoto, Y. Oumi, K. Yogo, S. Uemiya, Effect of pore size, aminosilane density and aminosilane molecular length on CO2 adsorption performance in aminosilane modified mesoporous silica, Micropor. Mesopor. Mater. 246(2017) 158-165. [74] W. Klinthong, K.J. Chao, C.S. Tan, CO2 capture by as-synthesized aminefunctionalized MCM-41 prepared through direct synthesis under basic condition, Ind. Eng. Chem. Res. 52(2013) 9834-9842. [75] W. Klinthong, C.H. Huang, Ch.S. Tan, One-pot synthesis and pelletizing of polyethylenimine-containing mesoporous silica powders for CO2 capture, Ind. Eng. Chem. Res. 55(2016) 6481-6491. [76] F.Q. Liu, L. Wang, Z.G. Huang, C.Q. Li, W. Li, R.X. Li, W. Li, Amine-tethered Adsorbents based on three-dimensional macroporous silica for CO2 capture from simulated flue gas and air, ACS Appl. Mater. Interfaces 6(2014) 4371-4381. [77] L. Wei, Y. Jing, Z. Gao, Y. Wang, Development of a pentaethylenehexaminemodified solid support adsorbent for CO2 capture from model flue gas, Chinese J. Chem. Eng. 23(2015) 366-371. [78] M.B. Yue, Y. Chun, Y. Cao, X. Dong, J.H. Zhu, CO2 capture by as-prepared SBA-15 with an occluded organic template, Adv. Funct. Mater. 16(2006) 1717-1722. [79] R. Kishor, A.K.G. Hoshal, High molecular weight polyethyleneimine functionalized three dimensional mesoporous silica for regenerable CO2 separation, Chem. Eng. J. 300(2016) 236-244. [80] X. Yan, L. Zhang, Y. Zhang, K. Qiao, Z. Yana, S. Komarneni, Amine-modified mesocellular silica foams for CO2 capture, Chem. Eng. J. 168(2011) 918-924. [81] X. Feng, G. Hu, X. Hu, G. Xie, Y. Xie, J. Lu, Lu. Me, Tetraethylenepentaminemodified siliceous mesocellular foam (MCF) for CO2 capture, Ind. Eng. Chem. Res. 52(2013) 4221-4228. [82] G. Zhang, P. Zhao, Y. Xu, Development of amine-functionalized hierarchically porous silica for CO2 capture, J. Ind. Eng. Chem. 54(2017) 59-68. [83] C. Chen, S.T. Yang, W.S. Ahn, R. Ryoo, Amine-impregnated silica monolith with a hierarchical pore structure:Enhancement of CO2 capture capacity, Chem. Commun. 24(2009) 3627-3629. [84] C. Ji, X. Huang, L. Li, F. Xiao, N. Zhao, W. Wei, Pentaethylenehexamine-loaded hierarchically porous silica for CO2 adsorption, Materials 9(2016) 835-852. [85] G. Zhang, P. Zhao, L. Hao, Y. Xu, Amine-modified SBA-15(P):A promising adsorbent for CO2 capture, J. CO2 Util. 24(2018) 22-33. [86] L. Zhou, J. Fan, G. Cui, X. Shang, Q. Tang, J. Wang, M. Fan, Highly efficient and reversible CO2 adsorption by amine-grafted platelet SBA-15 with expanded pore diameters and short mesochannels, Green Chem. 16(2014) 4009-4016. [87] R. Kishor, A. Kumar Ghoshal, APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption, Chem. Eng. J. 262(2015) 882-890. [88] T. Watabe, K. Yogo, Isotherms and isosteric heats of adsorption for CO2 in amine-functionalized mesoporous silicas, Sep. Purif. Technol. 120(2013) 20-23. [89] K. Sim, N. Lee, J. Kim, E.B. Cho, C. Gunathilake, M. Jaroniec, CO2 adsorption on amine-functionalized periodic mesoporous benzenesilicas, ACS Appl. Mater. Interfaces 7(2015) 6792-6802. [90] N.N. Linneen, R. Pfeffer, Y.S. Lin, CO2 adsorption performance for amine grafted particulate silica aerogels, Chem. Eng. J. 254(2014) 190-197. [91] S. Cui, W. Cheng, X. Shen, M. Fan, Armistead (Ted) Russell, Z. Wu, X. Yi, Mesoporous amine-modified SiO2 aerogel:A potential CO2 sorbent, Energy Environ. Sci. 4(2011) 2070-2074. [92] Y. Kong, G. Jiang, M. Fan, X. Shen, S. Cuibc, A.G. Russelld, A new aerogel-based CO2 adsorbent developed using a simple sol-gel method along with supercritical drying, Chem. Commun. 50(2014) 12158-12161. [93] R. Chatterjee, B. Sajjadi, D.L. Mattern, W. Chen, T. Zubatiukc, D. Leszczynskac, J. Leszczynskic, N.O. Egiebord, N. Hammer, Ultrasound cavitation intensified amine functionalization:A feasible strategy for enhancing CO2 capture capacity of biochar, Fuel 225(2018) 287-298. [94] W. Tian, H. Zhang, X. Duan, H. Sun, G. Shao, S. Wang, Porous carbons:Structure-oriented design and versatile applications, Adv. Funct. Mater. 30(2020) 1909265-1909306. [95] M. Wang, L. Yao, J. Wang, Z. Zhang, W. Qiao, D. Long, L. Ling, Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture, Appl. Energy 168(2016) 282-290. [96] H. Sun, T. Wang, Y. Xu, W. Gao, P. Li, Q.J. Niu, Fabrication of polyimide and functionalized multi-walled carbon nanotubes mixed matrix membranes by in-situ polymerization for CO2 separation, Sep. Purif. Technol. 177(2017) 327-336. [97] M.M. Gui, Y.X. Yap, S.P. Chai, A.R. Mohamed, Multi-walled carbon nanotubes modified with (3-aminopropyl) triethoxysilane for effective carbon dioxide adsorption, Int. J. GreenH. Gas Con. 14(2013) 65-73. [98] A.K. Mishra, S. Ramaprabhu, Polyaniline/multiwalled carbon nanotubes nanocomposite-an excellent reversible CO2 capture candidate, RSC Adv. 2(2012) 1746-1750. [99] E. Molyanyan, S. Aghamiri, M.R. Talaie, N. Iraji, Experimental study of pure and mixtures of CO2 and CH4 adsorption on modified carbon nanotube, Int. J. Environ. Sci. Technol. 13(2016) 2001-2010. [100] Z. Zhou, Cl.M. Anderson,, S.K. Butler, S.K. Thompson, Kevin J. Whitty, T.-C. Shenc, K.J. Stowers, Stability and efficiency of CO2 capture using linear amine polymer modified carbon nanotubes, J. Mater. Chem. A 5(2017) 10486-10494. [101] L. Keller, B. Ohs, J. Lenhart, L. Abduly, P. Blanke, M. Wessling, High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture, Carbon 126(2018) 338-345. [102] P. Tamilarasan, S. Ramaprabhu, Amine-rich ionic liquid grafted graphene for sub-ambient carbon dioxide adsorption, RSC Adv. 6(2016) 3032-3040. [103] S.N. Kudahi, A.R. Noorpoor, N.M. Mahmood, Determination and analysis of CO2 capture kinetics and mechanisms on the novel graphene-based adsorbents, J. CO2 Util. 21(2017) 17-29. [104] G.J. Shin, K.Y. Rhee, S.J. Park, Improvement of CO2 capture by graphite oxide in presence of polyethylenimine, Int. J. Hydrogen Energy 41(2016) 14351-14359. [105] S. Gadipelli, Y. Lu, N.T. Skipper, T. Yildirim, Z. Guo, Design of hyperporous graphene networks and their application in solid-amine based carbon capture systems, J. Mater. Chem. A 5(2017) 17833-17840. [106] A. Pruna, A.C. Cárcela, A. Benedito, E. Giménez, Effect of synthesis conditions on CO2 capture of ethylenediamine-modified graphene aerogels, Appl. Surf. Sci. 487(2019) 228-235. [107] Y. He, Y. Xia, J. Zhao, Y. Song, L. Yi, L. Zhao, One-step fabrication of PEImodified GO particles for CO2 capture, Appl. Phys. A-Mater. 125(2019) 160-169. [108] K. Bhowmik, A. Chakravarty, S. Bysakh, Goutam D, g-Alumina nanorod/reduced graphene oxide as support for poly(ethylenimine) to capture carbon dioxide from flue gas, Energy Technol. 4(2016) 1-12. [109] J.A.A. Gibson, A.V. Gromov, S. Brandani, E.E.B. Campbel, The effect of pore structure on the CO2 adsorption efficiency of polyamine impregnated porous carbons, Micropor. Mesopor. Mater. 208(2015) 129-139. [110] M.S. Lee, S.Y. Lee, S.J. Park, Preparation and characterization of multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture, Int. J. Hydrogen Energy 40(2015) 3425-13421. [111] M.S. Lee, S.J. Park, Silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture under the flue gas condition, J. Solid State Chem. 226(2015) 17-23. [112] S.C. Hsu, C. Lu, F. Su, W. Zeng, W. Chen, Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes, Chem. Eng. Sci. 65(2010) 1354-1361. [113] Y. Liu, B. Sajjadi, W. Chen, R. Chatterjee, Ultrasound-assisted amine functionalized graphene oxide for enhanced CO2 adsorption, Fuel 247(2019) 10-18. [114] O. Cheung, N. Hedin, Zeolites and related sorbents with narrow pores for CO2 separation from flue gas, RSC Adv. 4(2014) 14480-14494. [115] C. Chen, S. Kim, W.S. Cho, W.S. Ahn, Polyethylenimine-incorporated zeolite 13X with mesoporosity for post-combustion CO2 capture, Appl. Surf. Sci. 332(2015) 167-171. [116] Y. Wang, T. Du, Z. Qiu, Y. Song, S. Che, X. Fang, CO2 adsorption on polyethylenimine-modified ZSM-5 zeolite synthesized from rice husk ash, Mater. Chem. Phys. 207(2018) 105-113. [117] D. Panda, E.A. Kumar, S.K. Singh, Amine modification of binder-containing zeolite 4A bodies for post-combustion CO2 capture, Ind. Eng. Chem. Res. 58(2019) 5301-5313. [118] A. Kalantarifard, A. Ghavaminejad, G.S. Yang, High CO2 adsorption on improved ZSM-5 zeolite porous structure modified with ethylenediamine and desorption characteristics with microwave, J. Mater Cycles Waste Manag. 19(2017) 394-405. [119] T.H. Nguyen, S. Kim, S. Kim, T.H. Bae, Hierarchical zeolites with aminefunctionalized mesoporous domains for carbon dioxide capture, ChemSusChem 9(2016) 455-461. [120] Y. Wang, T. Du, Y. Song, S. Che, X. Fang, L. Zhou, Amine-functionalized mesoporous ZSM-5 zeolite adsorbents for carbon dioxide capture, Solid State Sci. 73(2017) 27-35. [121] L.A. Darunte, Y. Terada, C.R. Murdock, K.S. Walton, D.S. Sholl, Christopher W. Jones, Monolith-supported amine-functionalized Mg2(dobpdc) adsorbents for CO2 capture, ACS Appl. Mater. Interfaces 9(2017) 17042-17050. [122] Y. Lin, Q. Yan, C. Kong, L. Chen, Polyethyleneimine incorporated metalorganic frameworks adsorbent for highly selective CO2 capture, Sci. Rep. 3(2013) 1859-1866. [123] Q. Yan, Y. Lin, C. Kong, L. Chen, Remarkable CO2/CH4 selectivity and CO2 adsorption capacity exhibited by polyamine-decorated metal-organic framework adsorbent, Chem. Commun. 49(2013) 6873-6875. [124] H. Molavi, A. Eskandari, A. Shojaei, S.A. Mousavi, Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66(Zr), Micropor. Mesopor. Mater. 257(2018) 193-201. [125] S. Xian, Y. Wu, J. Wu, X. Wang, J. Xiao, Enhanced dynamic CO2 adsorption capacity and CO2/CH4 selectivity on polyethylenimine-impregnated UiO-66, Ind. Eng. Chem. Res. 54(2015) 1115-1158. [126] Y. Cao, F. Song, Y. Zhao, Q. Zhong, Capture of carbon dioxide from flue gas on TEPA-grafted metal-organic framework Mg2(dobdc), J. Environ. Sci. 25(2013) 2081-2087. [127] P.Q. Liao, X.W. Chen, S.Y. Liu, X.Y. Li, Y.T. Xu, M. Tang, Z. Rui, H. Ji, J. Zhang, X. Chen, Putting an ultrahigh concentration of amine groups into a metal-organic framework for CO2 capture at low pressures, Chem. Sci. 7(2016) 6528-6533. [128] Y. Belmabkhout, V. Guillerm, M. Eddaoudi, Low concentration CO2 capture using physical adsorbents:Are metal-organic frameworks becoming the new benchmark materials?, Chem Eng. J. 296(2016) 386-397. [129] X. Su, L. Bromberg, V. Martis, F. Simeon, A. Huq, T.A. Hatton, Postsynthetic functionalization of Mg-MOF-74 with tetraethylenepentamine:Structural characterization and enhanced CO2 adsorption, ACS Appl. Mater. Interfaces 9(2017) 11299-11306. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||