[1] X. Qian, L. Chen, Y. Sui, C. Chen, W. Zhang, J. Zhou, W. Dong, M. Jiang, F. Xin, K. Ochsenreither, Biotechnological potential and applications of microbial consortia, Biotechnol. Adv. 40 (2020) 107500. [2] T. Chen, Y. Zhou, Y. Lu, H. Zhang, Advances in heterologous biosynthesis of plant and fungal natural products by modular co-culture engineering, Biotechnol. Lett. 41 (1) (2019) 27–34. [3] J.A. Jones, V.R. Vernacchio, S.M. Collins, A.N. Shirke, Y. Xiu, J.A. Englaender, B.F. Cress, C.C. Mccutcheon, R.J. Linhardt, R.A. Gross, M.A.G. Koffas, Complete biosynthesis of anthocyanins using E. coli polycultures, Mbio 8 (3) (2017) e00621–17. [4] A. Tesfaw, F. Assefa, Co-culture: A great promising method in single cell protein production, Biotechnol. Mol. Biol. Rev. 9 (2) (2014) 12–20. [5] R. Wang, S. Zhao, Z. Wang, M.A.G. Koffas, Recent advances in modular coculture engineering for synthesis of natural products, Curr. Opin. Biotech. 62 (2020) 65–71. [6] N.S. Mccarty, R. Ledesma-Amaro, Synthetic biology tools to engineer microbial communities for biotechnology, Trends Biotechnol. 37 (2) (2019) 181–197. [7] R.L. Shahab, S. Brethauer, M.P. Davey, A.G. Smith, S. Vignolini, J.S. Luterbacher, M.H. Studer, A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose, Science 369 (2020) 1073. [8] S. Giri, S. Shitut, C. Kost, Harnessing ecological and evolutionary principles to guide the design of microbial production consortia, Curr. Opin. Biotech. 62 (2020) 228–238. [9] Y. Jiang, R. Wu, J. Zhou, A. He, J. Xu, F. Xin, W. Zhang, J. Ma, M. Jiang, W. Dong, Recent advances of biofuels and biochemicals production from sustainable resources using co-cultivation systems, Biotechnol. Biofuels 12 (2019) 155. [10] X. Wang, R. Su, K. Chen, S. Xu, J. Feng, P. Ouyang, Engineering a microbial consortium based whole-cell system for efficient production of glutarate from l-lysine, Front. Microbiol. 10 (2019) 341. [11] P. Xu, M. Marsafari, J. Zha, M. Koffas, Microbial coculture for flavonoid synthesis, Trends Biotechnol. 38 (2020) 686–688. [12] J. Lu, Y. Lv, Y. Jiang, M. Wu, B. Xu, W. Zhang, J. Zhou, W. Dong, F. Xin, M. Jiang, Consolidated bioprocessing of hemicellulose-enriched lignocellulose to succinic acid through a microbial cocultivation system, Acs Sustain. Chem. Eng. 8 (24) (2020) 9035–9045. [13] H. Song, M. Ding, X. Jia, Q. Ma, Y. Yuan, Synthetic microbial consortia: from systematic analysis to construction and applications, Chem. Soc. Rev. 43 (20) (2014) 6954–6981. [14] R. Tsoi, Z. Dai, L. You, Emerging strategies for engineering microbial communities, Biotechnol. Adv. 37 (2019) 107372. [15] J. Hong, D. Im, M. Oh, Investigating E. coli coculture for resveratrol production with C-13 metabolic flux analysis, J. Agr. Food Chem. 68 (11) (2020) 3466–3473. [16] Y. Du, B. Yang, Z. Yi, L. Hu, M. Li, Engineering Saccharomyces cerevisiae coculture platform for the production of flavonoids, J. Agr. Food Chem. 68 (7) (2020) 2146–2154. [17] H. Zhang, B. Pereira, Z. Li, G. Stephanopoulos, Engineering Escherichia coli coculture systems for the production of biochemical products, P. Natl. Acad. Sci. USA 112 (27) (2015) 8266–8271. [18] X. Liu, X. Li, J. Jiang, Z. Liu, B. Qiao, F. Li, J. Cheng, X. Sun, Y. Yuan, J. Qiao, G. Zhao, Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides, Metab. Eng. 47 (2018) 243–253. [19] Z. Li, X. Wang, H. Zhang, Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering, Metab. Eng. 54 (2019) 1–11. [20] A.L. Mccully, B. Lasarre, J.B. Mckinlay, Growth-independent cross-feeding modifies boundaries for coexistence in a bacterial mutualism, Environ. Microbiol. 19 (9) (2017) 3538–3550. [21] B. Lasarre, A.L. Mccully, J.T. Lennon, J.B. Mckinlay, Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients, ISME J. 11 (2) (2017) 337–348. [22] S.G. Hays, L.L.W. Yan, P.A. Silver, D.C. Ducat, Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction, J. Biol. Eng 11 (2017) 4. [23] A. Pascual-Garcia, S. Bonhoeffer, T. Bell, Metabolically cohesive microbial consortia and ecosystem functioning, Philos. T. R. Soc. B 375 (2020) 20190245. [24] M. Ibrar, H. Zhang, Construction of a hydrocarbon-degrading consortium and characterization of two new lipopeptides biosurfactants, Sci. Total Environ. 714 (2020) 136400. [25] E. Ancheeva, A. Mandi, S.B. Kiraly, T. Kurtan, R. Hartmann, S.H. Akone, H. Weber, G. Daletos, P. Proksch, Chaetolines A and B, pyrano[3,2-f]isoquinoline alkaloids from cultivation of Chaetomium sp. in the presence of autoclaved Pseudomonas aeruginosa, J. Nat. Prod. 81 (11) (2018) 2392–2398. [26] S.K. Bhatia, R.K. Bhatia, Y. Choi, E. Kan, Y. Kim, Y. Yang, Biotechnological potential of microbial consortia and future perspectives, Crit. Rev. Biotechnol. 38 (8) (2018) 1209–1229. [27] H. Lu, J.C. Villada, P.K.H. Lee, Modular metabolic engineering for biobased chemical production, Trends Biotechnol. 37 (2) (2019) 152–166. [28] Q. Ma, J. Zhou, W. Zhang, X. Meng, J. Sun, Y. Yuan, Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C, PLoS one 6 (2011) e26108. [29] Y. Zhi, Q. Wu, Y. Xu, Production of surfactin from waste distillers’ grains by coculture fermentation of two Bacillus amyloliquefaciens strains, Bioresource Technol. 235 (2017) 96–103. [30] J.J. Minty, M.E. Singer, S.A. Scholz, C. Bae, J. Ahn, C.E. Foster, J.C. Liao, X.N. Lin, Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass, P. Natl. Acad. Sci. USA 110 (36) (2013) 14592–14597. [31] T. Liu, Y. Yu, T. Chen, W.N. Chen, A synthetic microbial consortium of Shewanella and Bacillus for enhanced generation of bioelectricity, Biotechnol. Bioeng. 114 (3) (2017) 526–532. [32] D. Beri, W.S. York, L.R. Lynd, M.J. Pena, C.D. Herring, Development of a thermophilic coculture for corn fiber conversion to ethanol, Nat. Commun. 11 (2020) 1937. [33] W. Chen, Y. Kong, J. Li, Y. Sun, J. Min, X. Hu, Enhanced biodegradation of crude oil by constructed bacterial consortium comprising salt-tolerant petroleum degraders and biosurfactant producers, Int. Biodeter. Biodegr. 154 (2020) 105047. [34] Q. Ma, Y. Bi, E. Wang, B. Zhai, X. Dong, B. Qiao, M. Ding, Y. Yuan, Integrated proteomic and metabolomic analysis of a reconstructed three-species microbial consortium for one-step fermentation of 2-keto-l-gulonic acid, the precursor of vitamin C, J. Ind. Microbiol. Biot. 46 (1) (2019) 21–31. [35] X. Wang, Z. Li, L. Policarpio, M.A.G. Koffas, H. Zhang, De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering, Appl. Microbiol. Biot. 104 (11) (2020) 4849–4861. [36] S. Yuan, X. Yi, T.G. Johnston, H.S. Alper, De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture, Microb. Cell Fact. 19 (2020) 143. [37] F. Hamza, A.R. Kumar, S. Zinjarde, Coculture induced improved production of biosurfactant by Staphylococcus lentus sz2: Role in protecting Artemia salina against Vibrio harveyi, Enzyme Microb. Tech. 114 (2018) 33–39. [38] A.R. Alves, A.M. Sequeira, A. Cunha, Increase in bacterial biosurfactant production by co-cultivation with biofilm-forming bacteria, Lett. Appl. Microbiol. 69 (1) (2019) 79–86. [39] G. Goyal, S. Tsai, B. Madan, N.A. Dasilva, W. Chen, Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome, Microb. Cell Fact. 10 (2011) 89. [40] S. Kim, S. Baek, K. Lee, J. Hahn, Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and beta-glucosidase, Microb. Cell Fact. 12 (2013) 14. [41] I.A. Phulpoto, B. Hu, Y. Wang, F. Ndayisenga, Z. Yu, Effect of natural microbiome and culturable biosurfactants-producing bacterial consortia of freshwater lake on petroleum-hydrocarbon degradation, Sci. Total Environ. 751 (2020) 141720. [42] S. Che, Y. Men, Synthetic microbial consortia for biosynthesis and biodegradation: Promises and challenges, J. Ind. Microbiol. Biot. 46 (9–10SI) (2019) 1343–1358. [43] S. Ghosh, R. Chowdhury, P. Bhattacharya, Mixed consortia in bioprocesses: Role of microbial interactions, Appl. Microbiol. Biot. 100 (10) (2016) 4283–4295. [44] S.R. Lindemann, H.C. Bernstein, H. Song, J.K. Fredrickson, M.W. Fields, W. Shou, D.R. Johnson, A.S. Beliaev, Engineering microbial consortia for controllable outputs, ISME J. 10 (9) (2016) 2077–2084. [45] A. Burmeister, F. Hilgers, A. Langner, C. Westerwalbesloh, Y. Kerkhoff, N. Tenhaef, T. Drepper, D. Kohlheyer, E. von Lieres, S. Noack, A. Gruenberger, A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments, Lab Chip 19 (1) (2019) 98–110. [46] S. Gupta, T.D. Ross, M.M. Gomez, J.L. Grant, P.A. Romero, O.S. Venturelli, Investigating the dynamics of microbial consortia in spatially structured environments, Nat. Commun. 11 (2020) 2418. [47] X. Luo, C. Tsao, H. Wu, D.N. Quan, G.F. Payne, G.W. Rubloff, W.E. Bentley, Distal modulation of bacterial cell-cell signalling in a synthetic ecosystem using partitioned microfluidics, Lab Chip 15 (8) (2015) 1842–1851. [48] H. Kim, B.S. Jeon, A. Pandey, B. Sang, New coculture system of Clostridium spp. and Megasphaera hexanoica using submerged hollow-fiber membrane bioreactors for caproic acid production, Bioresource Technol. 270 (2018) 498–503. [49] S. Freilich, R. Zarecki, O. Eilam, E.S. Segal, C.S. Henry, M. Kupiec, U. Gophna, R. Sharan, E. Ruppin, Competitive and cooperative metabolic interactions in bacterial communities, Nat. Commun. 2 (2011) 589. [50] G. D’Souza, S. Shitut, D. Preussger, G. Yousif, S. Waschina, C. Kost, Ecology and evolution of metabolic cross-feeding interactions in bacteria, Nat. Prod. Rep. 35 (5) (2018) 455–488. [51] P.S. Losoi, V.P. Santala, S.M. Santala, Enhanced population control in a synthetic bacterial consortium by interconnected carbon cross-feeding, ACS Synth. Biol. 8 (12) (2019) 2642–2650. [52] M. Ziesack, T. Gibson, J.K.W. Oliver, A.M. Shumaker, B.B. Hsu, D.T. Riglar, T.W. Giessen, N.V. Dibenedetto, L. Bry, J.C. Way, P.A. Silver, G.K. Gerber, Engineered interspecies amino acid cross-feeding increases population evenness in a synthetic bacterial consortium, Msystems 4 (2019) e00352–19. [53] Z. Sun, T. Koffel, S.M. Stump, G.M. Grimaud, C.A. Klausmeier, Microbial crossfeeding promotes multiple stable states and species coexistence, but also susceptibility to cheaters, J. Theor. Biol. 465 (2019) 63–77. [54] S.P. Hammarlund, J.M. Chacon, W.R. Harcombe, A shared limiting resource leads to competitive exclusion in a cross-feeding system, Environ. Microbiol. 21 (2) (2019) 759–771. [55] N.W. Smith, P.R. Shorten, E. Altermann, N.C. Roy, W.C. Mcnabb, The classification and evolution of bacterial cross-feeding, Front. Ecol. Evol. 7 (2019) 153. [56] G.W. Roell, J. Zha, R.R. Carr, M.A. Koffas, S.S. Fong, Y.J. Tang, Engineering microbial consortia by division of labor, Microb. Cell Fact. 18 (2019) 35. [57] S. Shitut, T. Ahsendorf, S. Pande, M. Egbert, C. Kost, Nanotube-mediated crossfeeding couples the metabolism of interacting bacterial cells, Environ. Microbiol. 21 (4) (2019) 1306–1320. [58] M.T. Mee, J.J. Collins, G.M. Church, H.H. Wang, Syntrophic exchange in synthetic microbial communities, P. Natl. Acad. Sci. USA 111 (20) (2014) E2149–E2156. [59] Y. Liu, M. Ding, W. Ling, Y. Yang, X. Zhou, B. Li, T. Chen, Y. Nie, M. Wang, B. Zeng, X. Li, H. Liu, B. Sun, H. Xu, J. Zhang, Y. Jiao, Y. Hou, H. Yang, S. Xiao, Q. Lin, X. He, W. Liao, Z. Jin, Y. Xie, B. Zhang, T. Li, X. Lu, J. Li, F. Zhang, X. Wu, H. Song, Y. Yuan, A three-species microbial consortium for power generation, Energ. Environ. Sci. 10 (7) (2017) 1600–1609. [60] S. Vet, S. de Buyl, K. Faust, J. Danckaert, D. Gonze, L. Gelens, Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-volterra equations, Plos One 13 (2018) e0197462. [61] S.M. Stump, E.C. Johnson, C.A. Klausmeier, Local interactions and selforganized spatial patterns stabilize microbial cross-feeding against cheaters, J. R. Soc. Interface 15 (2018) 20170822. [62] A.J. Waite, W. Shou, Adaptation to a new environment allows cooperators to purge cheaters stochastically, P. Natl. Acad. Sci. USA 109 (47) (2012) 19079–19086. [63] M. Thommes, T. Wang, Q. Zhao, I.C. Paschalidis, D. Segre, Designing metabolic division of labor in microbial communities, Msystems 4 (2019) e00263–18. [64] K. Stephens, W.E. Bentley, Synthetic biology for manipulating quorum sensing in microbial consortia, Trends Microbiol. 28 (8) (2020) 633–643. [65] K.H. Nealson, J.W. Hastings, Bacterial bioluminescence - Its control and ecological significance, Microbial. Rev. 43 (4) (1979) 496–518. [66] G.J. Lyon, R.P. Novick, Peptide signaling in Staphylococcus aureus and other gram-positive bacteria, Peptides 25 (9) (2004) 1389–1403. [67] C. Ge, H. Sheng, X. Chen, X. Shen, X. Sun, Y. Yan, J. Wang, Q. Yuan, Quorum sensing system used as a tool in metabolic engineering, Biotechnol. J. 15 (2020) 1900360. [68] A. Vendeville, K. Winzer, K. Heurlier, C.M. Tang, K.R. Hardie, Making ’sense’ of metabolism: autoinducer-2, luxs and pathogenic bacteria, Nat. Rev. Microbiol. 3 (5) (2005) 383–396. [69] S. Wu, J. Liu, C. Liu, A. Yang, J. Qiao, Quorum sensing for population-level control of bacteria and potential therapeutic applications, Cell. Mol. Life Sci. 77 (7) (2020) 1319–1343. [70] K. Stephens, M. Pozo, C. Tsao, P. Hauk, W.E. Bentley, Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition, Nat. Commun. 10 (2019) 4129. [71] F.K. Balagadde, H. Song, J. Ozaki, C.H. Collins, M. Barnet, F.H. Arnold, S.R. Quake, L. You, A synthetic Escherichia coli predator-prey ecosystem, Mol. Syst. Biol. 4 (2008) 187. [72] H. Honjo, K. Iwasaki, Y. Soma, K. Tsuruno, H. Hamada, T. Hanai, Synthetic microbial consortium with specific roles designated by genetic circuits for cooperative chemical production, Metab. Eng. 55 (2019) 268–275. [73] N. Marchand, C.H. Collins, Synthetic quorum sensing and cell-cell communication in gram-positive Bacillus megaterium, ACS Synth. Biol. 5 (7) (2016) 597–606. [74] B.P. Teague, R. Weiss, Synthetic communities, the sum of parts, Science 349 (6251) (2015) 924–925. [75] P.K. Grant, N. Dalchau, J.R. Brown, F. Federici, T.J. Rudge, B. Yordanov, O. Patange, A. Phillips, J. Haseloff, Orthogonal intercellular signaling for programmed spatial behavior, Mol. Syst. Biol. 12 (2016) 849. [76] S.R. Scott, J. Hasty, Quorum sensing communication modules for microbial consortia, ACS Synth. Biol. 5 (9) (2016) 969–977. [77] P. Du, H. Zhao, H. Zhang, R. Wang, J. Huang, Y. Tian, X. Luo, X. Luo, M. Wang, Y. Xiang, L. Qian, Y. Chen, Y. Tao, C. Lou, De novo design of an intercellular signaling toolbox for multi-channel cell-cell communication and biological computation, Nat. Commun. 11 (2020) 4226. [78] S. Widder, R.J. Allen, T. Pfeiffer, T.P. Curtis, C. Wiuf, W.T. Sloan, O.X. Cordero, S. P. Brown, B. Momeni, W. Shou, H. Kettle, H.J. Flint, A.F. Haas, B. Laroche, J. Kreft, P.B. Rainey, S. Freilich, S. Schuster, K. Milferstedt, J.R. van der Meer, T. Grosskopf, J. Huisman, A. Free, C. Picioreanu, C. Quince, I. Klapper, S. Labarthe, B.F. Smets, H. Wang, O.S. Soyer, Challenges in microbial ecology: building predictive understanding of community function and dynamics, ISME J. 10 (11) (2016) 2557–2568. [79] B.D. Karkaria, N.J. Treloar, C.P. Barnes, A.J.H. Fedorec, From microbial communities to distributed computing systems, Front. Bioeng. Biotech. 8 (2020) 834. [80] W. Kong, D.R. Meldgin, J.J. Collins, T. Lu, Designing microbial consortia with defined social interactions, Nat. Chem. Biol. 14 (2018) 821–829. [81] C. Gao, H. Cao, P. Cai, S.J. Sorensen, The initial inoculation ratio regulates bacterial coculture interactions and metabolic capacity, The ISME J. 15 (2021) 29–40. [82] X. Liu, L. Li, J. Liu, J. Qiao, G. Zhao, Metabolic engineering escherichia coli for efficient production of icariside d2, Biotechnol. Biofuels 12 (2019) 261. |