[1] L.T. Mika, E. Cséfalvay, Á. Németh, Catalytic conversion of carbohydrates to initial platform chemicals:Chemistry and sustainability, Chem Rev 118 (2) (2018) 505-613 [2] A. Gandini, T.M. Lacerda, A.J. Carvalho, E. Trovatti, Progress of polymers from renewable resources:Furans, vegetable oils, and polysaccharides, Chem Rev 116 (3) (2016) 1637-1669 [3] I.S. Tan, M.K. Lam, H.C.Y. Foo, S. Lim, K.T. Lee, Advances of macroalgae biomass for the third generation of bioethanol production, Chin. J. Chem. Eng. 28 (2) (2020) 502-517 [4] L.H. Chen, R. Chen, S.Y. Fu, FeCl3 pretreatment of three lignocellulosic biomass for ethanol production, ACS Sustain. Chem. Eng. 3 (8) (2015) 1794-1800 [5] M. Gupta, M.L. Smith, J.J. Spivey, Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts, ACS Catal. 1 (6) (2011) 641-656 [6] L.L. Zhai, R.R. Manglekar, A.L. Geng, Enzyme production and oil palm empty fruit bunch bioconversion to ethanol using a hybrid yeast strain, Biotechnol Appl Biochem 67 (5) (2020) 714-722 [7] A.J. Straathof, Transformation of biomass into commodity chemicals using enzymes or cells, Chem Rev 114 (3) (2014) 1871-1908 [8] T.T. Yan, W.L. Dai, G.J. Wu, S. Lang, M. Hunger, N.J. Guan, L.D. Li, Mechanistic insights into one-step catalytic conversion of ethanol to butadiene over bifunctional Zn-Y/beta zeolite, ACS Catal. 8 (4) (2018) 2760-2773 [9] J.M. Sun, K.K. Zhu, F. Gao, C.M. Wang, J. Liu, C.H.F. Peden, Y. Wang, Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOzMixed oxides with balanced acid-base sites, J. Am. Chem. Soc. 133 (29) (2011) 11096-11099 [10] Q.Q. Zhu, B. Wang, T.W. Tan, Conversion of ethanol and acetaldehyde to butadiene over MgO-SiO2 catalysts:Effect of reaction parameters and interaction between MgO and SiO2 on catalytic performance, ACS Sustain. Chem. Eng. 5 (1) (2017) 722-733 [11] T. Kamsuwan, P. Praserthdam, B. Jongsomjit, Tuning of catalytic behaviors in ethanol dehydration with oxygen cofeeding over Pd-HBZ catalyst for ethylene production at low temperature, Catal. Commun. 137 (2020) 105941 [12] S.X. Li, Y. Men, J.G. Wang, S. Liu, X.F. Wang, F. Ji, S.S. Chai, Q.L. Song, Morphological control of inverted MgO-SiO2 composite catalysts for efficient conversion of ethanol to 1, 3-butadiene, Appl. Catal. A:Gen. 577 (2019) 1-9 [13] P.C. Bruijnincx, B.M. Weckhuysen, Shale gas revolution:An opportunity for the production of biobased chemicals?Angew Chem Int Ed Engl 52 (46) (2013) 11980-11987 [14] G. Pomalaza, M. Capron, V. Ordomsky, F. Dumeignil, Recent breakthroughs in the conversion of ethanol to butadiene, Catalysts 6 (12) (2016) 203 [15] Sushkevich VL, Ivanova II, Ordomsky VV, Taarning E, Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol, ChemSusChem 7 (9) (2014) 2527-2536 [16] E.V. Makshina, M. Dusselier, W. Janssens, J. Degrève, P.A. Jacobs, B.F. Sels, Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene, Chem Soc Rev 43 (22) (2014) 7917-7953 [17] V.L. Dagle, M.D. Flake, T.L. Lemmon, J.S. Lopez, L. Kovarik, R.A. Dagle, Effect of the SiO2 support on the catalytic performance of Ag/ZrO2/SiO2 catalysts for the single-bed production of butadiene from ethanol, Appl. Catal. B:Environ. 236 (2018) 576-587 [18] S.A. Akhade, A. Winkelman, V. Lebarbier Dagle, L. Kovarik, S.F. Yuk, M.S. Lee, J. Zhang, A.B. Padmaperuma, R.A. Dagle, V.A. Glezakou, Y. Wang, R. Rousseau, Influence of Ag metal dispersion on the thermal conversion of ethanol to butadiene over Ag-ZrO2/SiO2 catalysts, J. Catal. 386 (2020) 30-38 [19] W. Janssens, E.V. Makshina, P. Vanelderen, F. De Clippel, K. Houthoofd, S. Kerkhofs, J.A. Martens, P.A. Jacobs, B.F. Sels, Ternary Ag/MgO-SiO2 catalysts for the conversion of ethanol into butadiene, ChemSusChem 8 (6) (2015) 913 [20] C. Angelici, M.E. Velthoen, B.M. Weckhuysen, P.C. Bruijnincx, Effect of preparation method and CuO promotion in the conversion of ethanol into 1, 3-butadiene over SiO2-MgO catalysts, ChemSusChem 7 (9) (2014) 2505-2515 [21] C. Angelici, F. Meirer, A.M.J. van der Eerden, H.L. Schaink, A. Goryachev, J.P. Hofmann, E.J.M. Hensen, B.M. Weckhuysen, P.C.A. Bruijnincx, Ex situ and operando studies on the role of copper in Cu-promoted SiO2-MgO catalysts for the Lebedev ethanol-to-butadiene process, ACS Catal. 5 (10) (2015) 6005-6015 [22] S. Shylesh, A.A. Gokhale, C.D. Scown, D. Kim, C.R. Ho, A.T. Bell, From sugars to wheels:The conversion of ethanol to 1,3-butadiene over metal-promoted magnesia-silicate catalysts, ChemSusChem 9 (12) (2016) 1462-1472. [23] S.H. Chung, C. Angelici, S.O.M. Hinterding, M. Weingarth, M. Baldus, K. Houben, B.M. Weckhuysen, P.C.A. Bruijnincx, Correction to role of magnesium silicates in wet-kneaded silica-magnesia catalysts for the Lebedev ethanol-to-butadiene process, ACS Catal. 6 (11) (2016) 7685 [24] M.D. Jones, C.G. Keir, C.D. Iulio, R.A.M. Robertson, C.V. Williams, D.C. Apperley, Investigations into the conversion of ethanol into 1, 3-butadiene, Catal. Sci. Technol. 1 (2) (2011) 267-272 [25] S. Da Ros, M.D. Jones, D. Mattia, J.C. Pinto, M. Schwaab, F.B. Noronha, S.A. Kondrat, T.C. Clarke, S.H. Taylor, Ethanol to 1,3-butadiene conversion by using ZrZn-containing MgO/SiO2 systems prepared by Co-precipitation and effect of catalyst acidity modification, ChemCatChem 8 (14) (2016) 2376-2386 [26] M. Lewandowski, G.S. Babu, M. Vezzoli, M.D. Jones, R.E. Owen, D. de Mattia, P. Plucinski, E. Mikolajska, A. Ochenduszko, D.C. Apperley, Investigations into the conversion of ethanol to 1, 3-butadiene using MgO:SiO2 supported catalysts, Catal. Commun. 49 (2014) 25-28 [27] T. De Baerdemaeker, M. Feyen, U. Müller, B. Yilmaz, F.S. Xiao, W.P. Zhang, T. Yokoi, X.H. Bao, H. Gies, D.E. de Vos, Bimetallic Zn and Hf on silica catalysts for the conversion of ethanol to 1, 3-butadiene, ACS Catal. 5 (6) (2015) 3393-3397 [28] G. Pomalaza, G. Vofo, M. Capron, F. Dumeignil, ZnTa-TUD-1 as an easily prepared, highly efficient catalyst for the selective conversion of ethanol to 1,3-butadiene, Green Chem. 20 (14) (2018) 3203-3209 [29] V.L. Sushkevich, I.I. Ivanova, E. Taarning, Ethanol conversion into butadiene over Zr-containing molecular sieves doped with silver, Green Chem. 17 (4) (2015) 2552-2559 [30] R.A.L. Baylon, J.M. Sun, Y. Wang, Conversion of ethanol to 1, 3-butadiene over Na doped ZnxZryOz mixed metal oxides, Catal. Today 259 (2016) 446-452 [31] P.T. Patil, D.P. Liu, Y. Liu, J. Chang, A. Borgna, Improving 1,3-butadiene yield by Cs promotion in ethanol conversion, Appl. Catal. A:Gen. 543 (2017) 67-74 [32] B. Szabó, G. Novodárszki, Z. May, J. Valyon, J. Hancsók, R. Barthos, Conversion of ethanol to butadiene over mesoporous In2O3-promoted MgO-SiO2 catalysts, Mol. Catal. 491 (2020) 110984 [33] P.I. Kyriienko, O.V. Larina, S.O. Soloviev, S.M. Orlyk, C. Calers, S. Dzwigaj, Ethanol conversion into 1,3-butadiene by the Lebedev method over MTaSiBEA zeolites (M=Ag, Cu, Zn), ACS Sustain. Chem. Eng. 5 (3) (2017) 2075-2083 [34] Liang Qi, Yanfei Zhang, Matthew A. Conrad, Christopher K. Russell, Jeffrey Miller, A.T. Bell, Ethanol conversion to butadiene over isolated zinc and yttrium sites grafted onto dealuminated beta zeolite, J. Am. Chem. Soc. 142 (34) (2020) 14674-14687. [35] H.J. Chae, T.W. Kim, Y.K. Moon, H.K. Kim, K.E. Jeong, C.U. Kim, S.Y. Jeong, Butadiene production from bioethanol and acetaldehyde over tantalum oxide-supported ordered mesoporous silica catalysts, Appl. Catal. B:Environ. 150-151 (2014) 596-604 [36] Y.J. Zhao, S.J. Li, Z. Wang, S.N. Wang, S.P. Wang, X.B. Ma, New ZnCe catalyst encapsulated in SBA-15 in the production of 1,3-butadiene from ethanol, Chin. Chem. Lett. 31 (2) (2020) 535-538 [37] D. Zhao, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279 (5350) (1998) 548-552 [38] Y.M. Wang, Z.Y. Wu, L.Y. Shi, J.H. Zhu, Rapid functionalization of mesoporous materials:Directly dispersing metal oxides into as-prepared SBA-15 occluded with template, Adv. Mater. 17 (3) (2005) 323-327 [39] Y. Yin, Z.H. Wen, X.Q. Liu, A.H. Yuan, L. Shi, Functionalization of SBA-15 with CeO2 nanoparticles for adsorptive desulfurization:Matters of template P123, Adsorpt. Sci. Technol. 36 (3-4) (2018) 953-966 [40] Y.F. Pu, K. Xuan, F. Wang, A.X. Li, N. Zhao, F.K. Xiao, Synthesis of dimethyl carbonate from CO2 and methanol over a hydrophobic Ce/SBA-15 catalyst, RSC Adv. 8 (48) (2018) 27216-27226 [41] A.Y. Yin, X.Y. Guo, W.L. Dai, K.N. Fan, The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol:New insights on the synergetic effect between Cu0 and cu+, J. Phys. Chem. C 113 (25) (2009) 11003-11013 [42] P. Challa, M.V. Rao, P. Nagaiah, A. Nagu, B.D. Raju, K.S.R. Rao, P. Challa, M.V. Rao, P. Nagaiah, A. Nagu, B.D. Raju, K.S.R. Rao, Coupling of CH3OH and CO2 with 2-cyanopyridine for enhanced yields of dimethyl carbonate over ZnO-CeO2catalyst, J. Chem. Sci. 131 (8) (2019) 86. [43] S.P. Meshram, P.V. Adhyapak, S.K. Pardeshi, I.S. Mulla, D.P. Amalnerkar, Sonochemically generated cerium doped ZnO nanorods for highly efficient photocatalytic dye degradation, Powder Technol. 318 (2017) 120-127 [44] Q.Q. Li, H.Y. Wang, Z.P. Tian, Y.J. Weng, C.G. Wang, J.R. Ma, C.F. Zhu, W.Z. Li, Q.Y. Liu, L.L. Ma, Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over Au/CeO2 catalysts:The morphology effect of CeO2, Catal. Sci. Technol. 9 (7) (2019) 1570-1580 [45] Z. Liang, D.H. Jiang, G.Q. Fang, W.H. Leng, P.X. Tu, Y.Q. Tong, L. Liu, J. Ni, X.N. Li, Catalytic enhancement of aldol condensation by oxygen vacancy on CeO2 catalysts, ChemistrySelect 4 (14) (2019) 4364-4370 [46] X.Q. Li, J.F. Pang, C. Wang, L. Li, X.L. Pan, M.Y. Zheng, T. Zhang, Conversion of ethanol to 1,3-butadiene over high-performance Mg-ZrOx/MFI nanosheet catalysts via the two-step method, Green Chem. 22 (9) (2020) 2852-2861 [47] M.X. Gao, H.X. Jiang, M.H. Zhang, The influence of calcination temperatures on the acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol/acetaldehyde mixture, Appl. Surf. Sci. 439 (2018) 1072-1078 [48] Q.Q. Zhu, L.L. Yin, K.Y. Ji, C. Li, B. Wang, T.W. Tan, Effect of catalyst structure and acid-base property on the multiproduct upgrade of ethanol and acetaldehyde to C4 (butadiene and butanol) over the Y-SiO2 catalysts, ACS Sustain. Chem. Eng. 8 (3) (2020) 1555-1565 [49] X.Q. Dong, J. Lu, Y.Z. Yu, M.H. Zhang, A DFT study on Zr-SBA-15 catalyzed conversion of ethanol to 1,3-butadiene, Phys. Chem. Chem. Phys. 20 (18) (2018) 12970-12978 |