[1] J. Li, F.D. Li, Polycyclic aromatic hydrocarbons in the Yellow River estuary:Levels, sources and toxic potency assessment, Mar Pollut Bull 116 (1-2) (2017) 479-487 [2] L.L. Niu, Y.T. Zhou, C. Xu, C.L. Zhang, J.H. Zhou, X.C. Zhang, W.P. Liu, Solid fuel combustion as a major contributor of polycyclic aromatic hydrocarbons in rural China:Evidence from emission inventory and congener profiles in tree bark, Environ Pollut 246 (2019) 621-629 [3] F. Gharibzadeh, R. Rezaei Kalantary, S. Nasseri, A. Esrafili, A. Azari, Reuse of polycyclic aromatic hydrocarbons (PAHs) contaminated soil washing effluent by bioaugmentation/biostimulation process, Sep. Purif. Technol. 168 (2016) 248-256 [4] S.C. Chen, C.M. Liao, Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources, Sci Total Environ 366 (1) (2006) 112-123 [5] M. Callahan, M. Slimak, N. Gabel, I. May, C. Fowler, J.R. Freed, P. Jennings, R. Durfee, F. Whitmore, B. Maestri, Water-related environmental fate of 129 priority pollutants. Volume 2:Halogenated aliphatic hydrocarbons, halogenated ethers, monocyclic aromatics, phthalate esters, polycyclic aromatic hydrocarbons, nitrosamines and miscellaneous compounds, Environmental Protection Agency. EPA-440/4-79-0296. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=2000K6JL.txt. [6] R. López-Vizcaíno, C. Sáez, P. Cañizares, M.A. Rodrigo, The use of a combined process of surfactant-aided soil washing and coagulation for PAH-contaminated soils treatment, Sep. Purif. Technol. 88 (2012) 46-51 [7] B.A. Ayele, J. Lu, Q.Y. Chen, Optimization of aeration enhanced surfactant soil washing for remediation of diesel-contaminated soils using response surface methodology, PeerJ 8 (2020) e8578 [8] S. Gitipour, A. Mohebban, S. Ghasemi, M. Abdollahinejad, B. Abdollahinejad, Evaluation of effective parameters in washing of PAH-contaminated soils using response surface methodology approach, Int. J. Environ. Sci. Technol. 17 (2) (2020) 683-694 [9] F. Gharibzadeh, R.R. Kalantary, M. Golshan, Optimization of influencing parameters on phenanthrene removal efficiency in soil washing process by using response surface methodology, Soil Sediment Contam.:Int. J. 27 (1) (2018) 46-59 [10] C. Trellu, E. Mousset, Y. Pechaud, D. Huguenot, E.D. van Hullebusch, G. Esposito, M.A. Oturan, Removal of hydrophobic organic pollutants from soil washing/Flushing solutions:A critical review, J Hazard Mater 306 (2016) 149-174 [11] H. Li, R. Qu, C. Li, W. Guo, X. Han, F. He, Y. Ma, B. Xing, Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures, Bioresour Technol. 163 (2014) 193-198 [12] J.F. Liu, J.J. Chen, L. Jiang, X. Yin, Adsorption of mixed polycyclic aromatic hydrocarbons in surfactant solutions by activated carbon, J. Ind. Eng. Chem. 20 (2) (2014) 616-623 [13] X. Zheng, H. Lin, Y.F. Tao, H. Zhang, Selective adsorption of phenanthrene dissolved in Tween 80 solution using activated carbon derived from walnut shells, Chemosphere 208 (2018) 951-959 [14] C.K. Ahn, Y.M. Kim, S.H. Woo, J.M. Park, Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon, J Hazard Mater 154 (1-3) (2008) 153-160 [15] W.J. Zhou, X.H. Wang, C.P. Chen, L.Z. Zhu, Removal of polycyclic aromatic hydrocarbons from surfactant solutions by selective sorption with organo-bentonite, Chem. Eng. J. 233 (2013) 251-257 [16] Y.X. Zeng, M. Zhang, D.H. Lin, K. Yang, Selective removal of phenanthrene from SDBS or TX100 solution by sorption of resin SP850, Chem. Eng. J. 388 (2020) 124191 [17] N.J. Wagner, R.J. Jula, Activated carbon adsorption. Activated Carbon Adsorption for Wastewater Treatment. CRC Press (2018) 41-60 [18] C.K. Ahn, S.H. Woo, J.M. Park, Selective adsorption of phenanthrene in nonionic-anionic surfactant mixtures using activated carbon, Chem. Eng. J. 158 (2) (2010) 115-119 [19] C.K. Ahn, Y.M. Kim, S.H. Woo, J.M. Park, Selective adsorption of phenanthrene dissolved in surfactant solution using activated carbon, Chemosphere 69 (11) (2007) 1681-1688 [20] C.K. Ahn, S.H. Woo, J.M. Park, Enhanced sorption of phenanthrene on activated carbon in surfactant solution, Carbon 46 (11) (2008) 1401-1410 [21] J.F. Liu, W.H. Chen, Remediation of phenanthrene contaminated soils by nonionic-anionic surfactant washing coupled with activated carbon adsorption, Water Sci Technol 72 (9) (2015) 1552-1560 [22] H. Zhang, H.J. Choi, P. Canazo, C.P. Huang, Multivariate approach to the Fenton process for the treatment of landfill leachate, J Hazard Mater 161 (2-3) (2009) 1306-1312 [23] F. Ay, E.C. Catalkaya, F. Kargi, A statistical experiment design approach for advanced oxidation of Direct Red azo-dye by photo-Fenton treatment, J Hazard Mater 162 (1) (2009) 230-236 [24] T. Güray, B. Menevşe, A.A. Yavuz, Determination of optimization parameters based on the Box-Behnken design for cloud point extraction of quinoline yellow using Brij 58 and application of this method to real samples, Spectrochim Acta A Mol Biomol Spectrosc 243 (2020) 118800 [25] H.Y. Li, Y.H. Gong, Q.Q. Huang, H. Zhang, Degradation of orange II by UV-assisted advanced Fenton process:Response surface approach, degradation pathway, and biodegradability, Ind. Eng. Chem. Res. 52 (44) (2013) 15560-15567 [26] L.M. Bellotindos, M.H. Lu, T. Methatham, M.C. Lu, Factors affecting degradation of dimethyl sulfoxide (DMSO) by fluidized-bed Fenton process, Environ. Sci. Pollut. Res. 21 (24) (2014) 14158-14165 [27] ZHANGHui, HUANGChin-Pao, Treatment of Landfill Leachate by Fenton Oxidation Process. Chin. J. Chem. Eng. (2002) 10(1)128-131 [28] M. Lu, D. Yuan, Q. Li, T. Ouyang, Application of response surface methodology to analyze the effects of soil/liquid ratio, pH, and incubation time on the bioaccessibility of PAHs from soil in in vitro method, Water Air Soil Pollut. 200 (1) (2009) 387-397 [29] H. Zhang, X.N. Ran, X.G. Wu, D.B. Zhang, Evaluation of electro-oxidation of biologically treated landfill leachate using response surface methodology, J Hazard Mater 188 (1-3) (2011) 261-268 [30] M. Xia, C.S. Ye, K.W. Pi, D.F. Liu, A.R. Gerson, Cr(III) removal from simulated solution using hydrous magnesium oxide coated fly ash:Optimization by response surface methodology (RSM), Chin. J. Chem. Eng. 26 (5) (2018) 1192-1199 [31] R. Rodríguez-Ramírez, I. Romero-Ibarra, J. Vazquez-Arenas, Synthesis of sodium zincsilicate (Na2ZnSiO4) and heterogeneous catalysis towards biodiesel production via Box-Behnken design, Fuel 280 (2020) 118668 [32] H. Lin, Y.T. Li, X.Y. Mao, H. Zhang, Electro-enhanced goethite activation of peroxydisulfate for the decolorization of Orange II at neutral pH:Efficiency, stability and mechanism, J. Taiwan Inst. Chem. Eng. 65 (2016) 390-398 [33] K. Yetilmezsoy, S. Demirel, R.J. Vanderbei, Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.:Box-Behnken experimental design, J Hazard Mater 171 (1-3) (2009) 551-562 [34] M.P. Ormad, R. Mosteo, C. Ibarz, J.L. Ovelleiro, Multivariate approach to the photo-Fenton process applied to the degradation of winery wastewaters, Appl. Catal. B:Environ. 66 (1-2) (2006) 58-63 [35] H. Zhang, Y.L. Li, X.G. Wu, Y.J. Zhang, D.B. Zhang, Application of response surface methodology to the treatment landfill leachate in a three-dimensional electrochemical reactor, Waste Manag 30 (11) (2010) 2096-2102 [36] M. Sleiman, D. Vildozo, C. Ferronato, J.M. Chovelon, Photocatalytic degradation of azo dye Metanil Yellow:Optimization and kinetic modeling using a chemometric approach, Appl. Catal. B:Environ. 77 (1-2) (2007) 1-11 [37] Wu X, Zhang H, Li Y, Zhang D, Li X, Factorial design analysis for COD removal from landfill leachate by photoassisted Fered-Fenton process, Environ Sci Pollut Res Int 21 (14) (2014) 8595-8602 [38] J.R. Domínguez, T. González, P. Palo, J. Sánchez-Martín, Electrochemical advanced oxidation of carbamazepine on boron-doped diamond anodes. Influence of operating variables, Ind. Eng. Chem. Res. 49 (18) (2010) 8353-8359 [39] H.L. Liu, Y.W. Lan, Y.C. Cheng, Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology, Process. Biochem. 39 (12) (2004) 1953-1961 [40] Y.H. Gong, H. Zhang, Y.L. Li, L.J. Xiang, S. Royer, S. Valange, J. Barrault, Evaluation of heterogeneous photo-Fenton oxidation of Orange II using response surface methodology, Water Sci Technol 62 (6) (2010) 1320-1326 [41] A.L. Ahmad, S. Ismail, S. Bhatia, Optimization of coagulation-flocculation process for palm oil mill effluent using response surface methodology, Environ Sci Technol 39 (8) (2005) 2828-2834 [42] R.A. Ruby Figueroa, A. Cassano, E. Drioli, Ultrafiltration of orange press liquor:Optimization for permeate flux and fouling index by response surface methodology, Sep. Purif. Technol. 80 (1) (2011) 1-10 [43] A.H. Long, H. Zhang, Selective oxidative degradation of toluene for the recovery of surfactant by an electro/Fe2+/persulfate process, Environ Sci Pollut Res Int 22 (15) (2015) 11606-11616 [44] E. Sharifpour, H.Z. Khafri, M. Ghaedi, A. Asfaram, R. Jannesar, Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon:Experimental design optimization, Ultrason Sonochem 40 (Pt A) (2018) 373-382 [45] Manju, S. Kumari, J. Sharma, S. Gupta, M. Kumar, S. Kumar, A. Kumar, A. Verma, Shalu, P. Sharma, K. Bajwa, S. Lal, N. Bishnoi, An assessment of cadmium removal from simulated waste water using leftover biomass of water hyacinth immobilized via emericella nidulans, J. Appl. Life Sci. Int. 8 (3) (2016) 1-10 [46] E. Mousset, N. Oturan, E.D. van Hullebusch, G. Guibaud, G. Esposito, M.A. Oturan, Influence of solubilizing agents (cyclodextrin or surfactant) on phenanthrene degradation by electro-Fenton process-Study of soil washing recycling possibilities and environmental impact, Water Res. 48 (2014) 306-316 [47] Z.N. Wang, T.T. Sun, T. Luo, X.L. Shi, H. Lin, H. Zhang, Selective removal of phenanthrene for the recovery of sodium dodecyl sulfate by UV-C and UV-C/PDS processes:Performance, mechanism and soil washing recycling, J Hazard Mater 400 (2020) 123141 |