[1] H.C. Flemming, J. Wingender, The biofilm matrix, Nat. Rev. Microbiol. 8 (2010) 623-633 [2] D. Liu, Y. Chen, A. Li, F. Ding, T. Zhou, Y. He, B. Li, H. Niu, X. Lin, J. Xie, Enhanced butanol production by modulation of electron flow in Clostridium acetobutylicum B3 immobilized by surface adsorption, Bioresour. Technol. 129 (2013) 321-328 [3] N. Qureshi, J. Schripsema, J. Lienhardt, H. Blaschek, Continuous solvent production by Clostridium beijerinckii BA101 immobilized by adsorption onto brick, World. J. Microbiol. Biotechnol. 16 (2000) 377-382 [4] D. Liu, Y. Chen, F.Y. Ding, T. Zhao, J.L. Wu, T. Guo, H.F. Ren, B.B. Li, H.Q. Niu, Z. Cao, X.Q. Lin, J.J. Xie, X.J. He, H.J. Ying, Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption, Biotechnol. Biofuels 7 (2014) 5 [5] L.A. Pratt, R. Kolter, Genetic analysis of Escherichia coli biofilm formation:roles of flagella, motility, chemotaxis and type I pili, Mol. Microbiol. 30 (1998) 285-293 [6] L. Friedman, R. Kolter, Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms, Mol. Microbiol. 51 (2004) 675-690 [7] V. Pantaleon, S. Bouttier, A.P. Soavelomandroso, C. Janoir, T. Candela, Biofilms of Clostridium species, Anaerobe 30 (2014) 193-198 [8] D. Liu, J. Xu, Y. Wang, Y. Chen, X. Shen, H. Niu, T. Guo, H. Ying, Comparative transcriptomic analysis of Clostridium acetobutylicum biofilm and planktonic cells, J. Biotechnol. 218 (2016) 1-12 [9] D. Liu, Z. Yang, Y. Chen, W. Zhuang, H. Niu, J. Wu, H. Ying, Clostridium acetobutylicum grows vegetatively in a biofilm rich in heteropolysaccharides and cytoplasmic proteins, Biotechnol. Biofuels. 11 (2018) 315 [10] Z. Yang, Z. Wang, M. Lei, J. Zhu, Y. Yang, S. Wu, B. Yu, H. Niu, H. Ying, D. Liu, Y. Wang, Effects of Spo0A on Clostridium acetobutylicum with an emphasis on biofilm formation, World. J. Microbiol. Biotechnol. 36 (2020) 80 [11] T. Ethapa, R. Leuzzi, Y.K. Ng, S.T. Baban, R. Adamo, S.A. Kuehne, M. Scarselli, N.P. Minton, D. Serruto, M. Unnikrishnan, Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile, J. Bacteriol. 195 (2013) 545-555 [12] E. Karatan, P. Watnick, Signals, regulatory networks, and materials that build and break bacterial biofilms, Microbiol. Mol. Biol. Rev. 73 (2009) 310-347 [13] G.A. O'Toole, G.C. Wong, Sensational biofilms:surface sensing in bacteria, Curr. Opin. Microbiol. 30 (2016) 139-146 [14] E. Steiner, A.E. Dago, D.I. Young, J.T. Heap, N.P. Minton, J.A. Hoch, M. Young, Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum, Mol. Microbiol. 80 (2011) 641-654 [15] J.T. Heap, O.J. Pennington, S.T. Cartman, G.P. Carter, N.P. Minton, The ClosTron:a universal gene knock-out system for the genus Clostridium, J. Microbiol. Methods 70 (2007) 452-464 [16] Q. Li, J. Chen, N.P. Minton, Y. Zhang, Z. Wen, J. Liu, H. Yang, Z. Zeng, X. Ren, J. Yang, Y. Gu, W. Jiang, Y. Jiang, S. Yang, CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii, Biotechnol. J. 11 (2016) 961-972 [17] Y. Jiang, C. Xu, F. Dong, Y. Yang, W. Jiang, S. Yang, Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio, Metab. Eng. 11 (2009) 284-291 [18] Z.K. Wang, J. Wang, J. Liu, S.H. Ying, X.J. Peng, M.G. Feng, Proteomic and Phosphoproteomic Insights into a Signaling Hub Role for Cdc14 in Asexual Development and Multiple Stress Responses in Beauveria bassiana, PLoS One 11 (2016) e0153007 [19] H. Dannheim, S.E. Will, D. Schomburg, M. Neumann-Schaal, Clostridioides difficile 630Deltaerm in silico and in vivo-quantitative growth and extensive polysaccharide secretion, FEBS open bio. 7 (2017) 602-615 [20] H. Vlamakis, Y. Chai, P. Beauregard, R. Losick, R. Kolter, Sticking together:building a biofilm the Bacillus subtilis way, Nat. Rev. Microbiol. 11 (2013) 157-168 [21] V. Lazarevic, B. Soldo, N. Medico, H. Pooley, S. Bron, D. Karamata, Bacillus subtilis alpha-phosphoglucomutase is required for normal cell morphology and biofilm formation, Appl. Environ. Microbiol. 71 (2005) 39-45 [22] E. Valiente, L. Bouche, P. Hitchen, A. Faulds-Pain, M. Songane, L.F. Dawson, E. Donahue, R.A. Stabler, M. Panico, H.R. Morris, M. Bajaj-Elliott, S.M. Logan, A. Dell, B.W. Wren, Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation, J. Biol. Chem. 291 (2016) 25450-25461 [23] E. Steiner, J. Scott, N.P. Minton, K. Winzer, An agr quorum sensing system that regulates granulose formation and sporulation in Clostridium acetobutylicum, Appl. Environ. Microbiol. 78 (2012) 1113-1122 [24] Z.T. Wen, A.H. Nguyen, J.P. Bitoun, J. Abranches, H.V. Baker, R.A. Burne, Transcriptome analysis of LuxS-deficient Streptococcus mutans grown in biofilms, Mol. Oral. Microbiol. 26 (2011) 2-18 [25] P. Davidson, R. Eutsey, B. Redler, N.L. Hiller, M.T. Laub, D. Durand, Flexibility and constraint:Evolutionary remodeling of the sporulation initiation pathway in Firmicutes, PLoS. Genet. 14 (2018) e1007470 [26] M. Pallen, R. Chaudhuri, A. Khan, Bacterial FHA domains:neglected players in the phospho-threonine signalling game, Trends Microbiol. 10 (2002) 556-563 [27] M. Desvaux, A. Khan, A. Scott-Tucker, R.R. Chaudhuri, M.J. Pallen, I.R. Henderson, Genomic analysis of the protein secretion systems in Clostridium acetobutylicum ATCC 824, Biochim. Biophys. Acta. 1745 (2005) 223-253 [28] E. Madec, A. Laszkiewicz, A. Iwanicki, M. Obuchowski, S. Seror, Characterization of a membrane-linked Ser/Thr protein kinase in Bacillus subtilis, implicated in developmental processes, Mol. Microbiol. 46 (2002) 571-586 [29] G. Arora, A. Sajid, R. Virmani, A. Singhal, C.M.S. Kumar, N. Dhasmana, T. Khanna, A. Maji, R. Misra, V. Molle, D. Becher, U. Gerth, S.C. Mande, Y. Singh, Ser/Thr protein kinase PrkC-mediated regulation of GroEL is critical for biofilm formation in Bacillus anthracis, NPJ Biofilms Microbiomes 3 (2017) 7 [30] N.A. Herman, S.J. Kim, J.S. Li, W. Cai, H. Koshino, W. Zhang, The industrial anaerobe Clostridium acetobutylicum uses polyketides to regulate cellular differentiation, Nat. Commun. 8 (2017) 1514 [31] H.A. Oliver-Kozup, M. Elliott, B.A. Bachert, K.H. Martin, S.D. Reid, D.E. Schwegler-Berry, B.J. Green, S. Lukomski, The streptococcal collagen-like protein-1 (Scl1) is a significant determinant for biofilm formation by group A Streptococcus, BMC Microbiol. 11 (2011) 262 [32] I.A. Rodionova, Z. Zhang, J. Mehla, N. Goodacre, M. Babu, A. Emili, P. Uetz, M.H. Saier, Jr., The phosphocarrier protein HPr of the bacterial phosphotransferase system globally regulates energy metabolism by directly interacting with multiple enzymes in Escherichia coli, J. Biol. Chem. 292 (2017) 14250-14257 [33] M. Choe, Y.H. Park, C.R. Lee, Y.R. Kim, Y.J. Seok, The general PTS component HPr determines the preference for glucose over mannitol, Sci. Rep. 7 (2017) 43431 [34] O. Riebe, R.J. Fischer, D.A. Wampler, D.M. Kurtz, Jr., H. Bahl, Pathway for H2O2 and O2 detoxification in Clostridium acetobutylicum, Microbiology 155 (2009) 16-24 [35] Huang Z., Wang Y.H., Zhu H.Z., Andrianova E.P., Jiang C.Y., Li D., Ma L., Feng J., Liu Z.P., Xiang H., Zhulin I.B., Liu S.J., Cross talk between chemosensory pathways that modulate chemotaxis and biofilm formation, mBio 10 (2019) e02876-18 [36] S. Kawasaki, Y. Sakai, T. Takahashi, I. Suzuki, Y. Niimura, O2 and reactive oxygen species detoxification complex, composed of O2-responsive NADH:rubredoxin oxidoreductase-flavoprotein A2-desulfoferrodoxin operon enzymes, rubperoxin, and rubredoxin, in Clostridium acetobutylicum, Appl. Environ. Microbiol. 75 (2009) 1021-1029 [37] A.L. McLoon, I. Kolodkin-Gal, S.M. Rubinstein, R. Kolter, R. Losick, Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis, J. Bacteriol. 193 (2011) 679-685 [38] M. Shemesh, Y. Chai, A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling, J. Bacteriol. 195 (2013) 2747-2754 [39] M. Shemesh, R. Kolter, R. Losick, The biocide chlorine dioxide stimulates biofilm formation in Bacillus subtilis by activation of the histidine kinase KinC, J. Bacteriol. 192 (2010) 6352-6356 [40] Huang Z., Wang Y.H., Zhu H.Z., Andrianova E.P., Jiang C.Y., Li D., Ma L., Feng J., Liu Z.P., Xiang H., Zhulin I.B., Liu S.J., Cross talk between chemosensory pathways that modulate chemotaxis and biofilm formation, mBio 10 (2019) e02876-18 [41] Y. Kato, M. Sugiura, T. Mizuno, H. Aiba, Effect of the arcA mutation on the expression of flagella genes in Escherichia coli, Bioscience, biotechnology, and biochemistry 71 (2007) 77-83 [42] K.P. Lemon, D.E. Higgins, R. Kolter, Flagellar motility is critical for Listeria monocytogenes biofilm formation, J. Bacteriol. 189 (2007) 4418-4424 [43] C. Cheng, Z. Dong, X. Han, H. Wang, L. Jiang, J. Sun, Y. Yang, T. Ma, C. Shao, X. Wang, Z. Chen, W. Fang, N.E. Freitag, H. Huang, H. Song, Thioredoxin A Is Essential for Motility and Contributes to Host Infection of Listeria monocytogenes via Redox Interactions, Front. Cell. Infect. Microbiol. 7 (2017) 287 [44] H.C. May, J.J. Yu, S. Shrihari, J. Seshu, K.E. Klose, A.P. Cap, J.P. Chambers, M.N. Guentzel, B.P. Arulanandam, Thioredoxin Modulates Cell Surface Hydrophobicity in Acinetobacter baumannii, Front. Microbiol. 10 (2019) 2849 |