[1] H. Liu, S.G. Fan, X. Gong, J. Wang, A.J. Guo, K. Chen, Z.X. Wang, Partial hydrogenation of anthracene with in situ hydrogen produced from water——gas shift reaction over Fe-based catalysts, Catalysts 10 (12) (2020) 1379 [2] R. Cuevas-García, J.G. Téllez-Romero, J. Ramírez, P. Sarabia-Bañuelos, I. Puente-Lee, C. Salcedo-Luna, S. Hernández-González, V.A. Nolasco-Arizmendi, Effect of the preparation method on particle size and reaction selectivity on naphthalene hydrogenation over Ni/H-MOR catalysts, Catal. Today 360 (2021) 63-71 [3] W.J. Wolf, J.M. Li, S.C. Jones, B.M. Stoltz, R.H. Grubbs, Efficient synthesis of geminal-dialkyl dienes for olefin metathesis polymerization, Macromolecules 53 (18) (2020) 7803-7809 [4] L. Zhou, Z.Y. Wang, G.Q. Xu, R.L. Yang, H.T. Yan, X.Q. Hao, Q.G. Wang, N-heterocyclic olefins catalyzed ring-opening polymerization of N-tosyl aziridines, Eur. Polym. J. 140 (2020) 110046 [5] G.M. Haselmann, B. Baumgartner, J. Wang, K. Wieland, T. Gupta, C. Herzig, A. Limbeck, B. Lendl, D. Eder, In situ Pt photodeposition and methanol photooxidation on Pt/TiO2:Pt-loading-dependent photocatalytic reaction pathways studied by liquid-phase infrared spectroscopy, ACS Catal. 10 (5) (2020) 2964-2977 [6] J. Yasuda, K. Inoue, K. Mizuno, S. Arai, K. Uehara, A. Kikuchi, Y.N. Yan, K. Yamanishi, Y. Kataoka, M. Kato, A. Kawai, T. Kawamoto, Photooxidation reactions of cyclometalated palladium(II) and platinum(II) complexes, Inorg. Chem. 58 (23) (2019) 15720-15725 [7] G.W. Chen, J. Yue, Q. Yuan, Gas——liquid microreaction technology:Recent developments and future challenges, Chin. J. Chem. Eng. 16 (5) (2008) 663-669 [8] S. Haeberle, R. Zengerle, Microfluidic platforms for lab-on-a-chip applications, Lab Chip 7 (9) (2007) 1094-1110 [9] J. Kobayashi, Y. Mori, K. Okamoto, R. Akiyama, M. Ueno, T. Kitamori, S. A. Kobayashi, A microfluidic device for conducting gas——liquid——solid hydrogenation reactions, Science 304 (5675) (2004) 1305-1308 [10] J.X. Yun, S.H. Zhang, S.C. Shen, Z. Chen, K.J. Yao, J.Z. Chen, Continuous production of solid lipid nanoparticles by liquid flow-focusing and gas displacing method in microchannels, Chem. Eng. Sci. 64 (19) (2009) 4115-4122 [11] P. Hajiani, F. Larachi, Remotely excited magnetic nanoparticles and gas——liquid mass transfer in Taylor flow regime, Chem. Eng. Sci. 93 (2013) 257-265 [12] W.F. Cai, J. Zhang, X.B. Zhang, Y. Wang, X.J. Qi, Enhancement of CO2 absorption under Taylor flow in the presence of fine particles, Chin. J. Chem. Eng. 21 (2) (2013) 135-143 [13] Y.E. Yu, S. Khodaparast, H.A. Stone, Separation of particles by size from a suspension using the motion of a confined bubble, Appl. Phys. Lett. 112 (18) (2018) 181604 [14] S.S. Kuntaegowdanahalli, A.A.S. Bhagat, G. Kumar, I. Papautsky, Inertial microfluidics for continuous particle separation in spiral microchannels, Lab Chip 9 (20) (2009) 2973 [15] S.Z. Zhang, C.Y. Zhu, H.S. Feng, T.T. Fu, Y.G. Ma, Intensification of gas——liquid two-phase flow and mass transfer in microchannels by sudden expansions, Chem. Eng. Sci. 229 (2021) 116040 [16] Z.F. Pang, S.K. Jiang, C.Y. Zhu, Y.G. Ma, T.T. Fu, Mass transfer of chemical absorption of CO2 in a serpentine minichannel, Chem. Eng. J. 414 (2021) 128791 [17] Y.H. Su, G.W. Chen, Q. Yuan, Influence of hydrodynamics on liquid mixing during Taylor flow in a microchannel, AIChE J. 58 (6) (2012) 1660-1670 [18] C.Q. Yao, H.Y. Ma, Q.K. Zhao, Y.Y. Liu, Y.C. Zhao, G.W. Chen, Mass transfer in liquid——liquid Taylor flow in a microchannel:Local concentration distribution, mass transfer regime and the effect of fluid viscosity, Chem. Eng. Sci. 223 (2020) 115734 [19] P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up, Lab Chip 6 (3) (2006) 437-446 [20] V. van Steijn, M.T. Kreutzer, C.R. Kleijn, μ-PIV study of the formation of segmented flow in microfluidic T-junctions, Chem. Eng. Sci. 62 (24) (2007) 7505-7514 [21] P.M. Korczyk, V. Steijn, S. Blonski, D. Zaremba, D.A. Beattie, P. Garstecki, Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels, Nat. Commun. 10 (1) (2019) 1-9 [22] C. Tang, M.Y. Liu, Y.G. Xu, 3-D numerical simulations on flow and mixing behaviors in gas——liquid——solid microchannels, AIChE J. 59 (6) (2013) 1934-1951 [23] A.K. Liedtke, F. Scheiff, F. Bornette, R. Philippe, D.W. Agar, C. de Bellefon, Liquid-solid mass transfer for microchannel suspension catalysis in gas-liquid and liquid-liquid segmented flow, Ind. Eng. Chem. Res. 54 (17) (2015) 4699-4708 [24] A.A.S. Bhagat, S.S. Kuntaegowdanahalli, I. Papautsky, Inertial microfluidics for continuous particle filtration and extraction, Microfluid. Nanofluid. 7 (2) (2009) 217-226 [25] P. Paiè, F. Bragheri, D. Di Carlo, R. Osellame, Particle focusing by 3D inertial microfluidics, Microsyst. Nanoeng. 3 (1) (2017) 1-8 [26] E. Chiarello, A. Gupta, G. Mistura, M. Sbragaglia, M. Pierno, Droplet breakup driven by shear thinning solutions in a microfluidic T-junction, Phys. Rev. Fluids 2 (12) (2017) 123602 [27] V.L. Wong, K. Loizou, P.L. Lau, R.S. Graham, B.N. Hewakandamby, Numerical studies of shear-thinning droplet formation in a microfluidic T-junction using two-phase level-SET method, Chem. Eng. Sci. 174 (2017) 157-173 [28] H.A. Barnes, Shear-thickening ("dilatancy") in suspensions of nonaggregating solid particles dispersed in Newtonian liquids, J. Rheol. 33 (2) (1989) 329-366 [29] A.M. Leshansky, L.M. Pismen, Breakup of drops in a microfluidic T junction, Phys. Fluids 21 (2) (2009) 023303 [30] T.T. Fu, Y.G. Ma, D. Funfschilling, H.Z. Li, Bubble formation in non-Newtonian fluids in a microfluidic T-junction, Chem. Eng. Process.:Process. Intensif. 50 (4) (2011) 438-442 [31] W. Du, T.T. Fu, C.Y. Zhu, Y.G. Ma, H.Z. Li, Breakup dynamics for high-viscosity droplet formation in a flow-focusing device:Symmetrical and asymmetrical ruptures, AIChE J. 62 (1) (2016) 325-337 [32] H. Zhou, C.Y. Zhu, T.T. Fu, Y.G. Ma, H.Z. Li, Dynamics and interfacial evolution for bubble breakup in shear-thinning non-Newtonian fluid in microfluidic T-junction, Chem. Eng. Sci. 208 (2019) 115158 [33] X.D. Wang, C.Y. Zhu, Y.N. Wu, T.T. Fu, Y.G. Ma, Dynamics of bubble breakup with partly obstruction in a microfluidic T-junction, Chem. Eng. Sci. 132 (2015) 128-138 [34] C.Q. Yao, Z.Y. Dong, Y.C. Zhang, Y. Mi, Y.C. Zhao, G.W. Chen, On the leakage flow around gas bubbles in slug flow in a microchannel, AIChE J. 61 (11) (2015) 3964-3972 [35] E. Brown, N.A. Forman, C.S. Orellana, H.J. Zhang, B.W. Maynor, D.E. Betts, J.M. DeSimone, H.M. Jaeger, Generality of shear thickening in dense suspensions, Nat. Mater. 9 (3) (2010) 220-224 |