[1] R. Wang, W. Cui, F. Chu, F. Wu, Lithium metal anodes:Present and future, J. Energy Chem. 48(2020)145-159. [2] F. Wu, G. Yushin, Conversion cathodes for rechargeable lithium and lithiumion batteries, Energy Environ. Sci. 10(2)(2017)435-459. [3] A. Manthiram, A reflection on lithium-ion battery cathode chemistry, Nat. Commun. 11(1)(2020)1550. [4] G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, P. Anderson, Recycling lithium-ion batteries from electric vehicles, Nature 575(7781)(2019)75-86. [5] C. Liu, J. Lin, H. Cao, Y.i. Zhang, Z. Sun, Recycling of spent lithium-ion batteries in view of lithium recovery:A critical review, J. Clean. Prod. 228(2019)801-813. [6] J. Xiao, J. Li, Z. Xu, Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives, Environ. Sci. Technol. 54(1)(2020)9-25. [7] J. Xiao, B.o. Niu, Q. Song, L.u. Zhan, Z. Xu, Novel targetedly extracting lithium: An environmental-friendly controlled chlorinating technology and mechanism of spent lithium ion batteries recovery, J. Hazard. Mater. 404(2021)123947. [8] Y.Q. Tang, B.L. Zhang, H.W. Xie, X. Qu, P.F. Xing, H.Y. Yin, Recovery and regeneration of lithium cobalt oxide from spent lithium-ion batteries through a low-temperature ammonium sulfate roasting approach, J. Power Sources 474(2020)228596. [9] T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, M. Rutz, Development of a recycling process for Li-ion batteries, J. Power Sources. 207(2012)173-182. [10] F. Wang, T. Zhang, Y. He, Y. Zhao, S. Wang, G. Zhang, Y.u. Zhang, Y.i. Feng, Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment, J. Clean. Prod. 185(2018)646-652. [11] H. Dang, B. Wang, Z. Chang, X. Wu, J. Feng, H. Zhou, W. Li, C. Sun, Recycled lithium from simulated pyrometallurgical slag by chlorination roasting, ACS Sustainable Chem. Eng. 6(10)(2018)13160-13167. [12] L.C. Zhang, L.J. Li, H.M. Rui, D. Shi, X.W. Peng, L.M. Ji, X.X. Song, Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction, J. Hazard. Mater. 398(2020)122840. [13] P. Yadav, C.J. Jie, S. Tan, M. Srinivasan, Recycling of cathode from spent lithium iron phosphate batteries, J. Hazard. Mater. 399(2020)123068. [14] X.P. Chen, D.Z. Kang, J.Z. Li, T. Zhou, H.R. Ma, Gradient and facile extraction of valuable metals from spent lithium ion batteries for new cathode materials refabrication, J. Hazard. Mater. 389(2020)121887. [15] S.Y. Lei, Y. Cao, X.F. Cao, W. Sun, Y.Q. Weng, Y. Yang, Separation of lithium and transition metals from leachate of spent lithium-ion batteries by solvent extraction method with Versatic 10, Sep. Purif. Technol. 250(2020)117258. [16] D. Cheret, S. Santen, Battery recycling, U.S. Pat., 7169206(2007). [17] J. Heulens, D. Horebeek, M. Quix, S. Brouwer, Process for smelting lithium-ion batteries, U.S. Pat., 20170229744A1(2017). [18] H. Dang, N. Li, Z.D. Chang, B.F. Wang, Y.F. Zhan, X. Wu, W.B. Liu, S. Ali, H.D. Li, J. H. Guo, W.J. Li, H.L. Zhou, C.Y. Sun, Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery, Sep. Purif. Technol. 233(2020)116025. [19] Q.-X. YAN, X.-H. LI, Z.-X. WANG, J.-x. WANG, H.-J. GUO, Q.-Y. HU, W.-J. PENG, X.-F. WU, Extraction of lithium from lepidolite using chlorination roastingwater leaching process, Trans. Nonferrous. Met. Soc. China 22(7)(2012)1753-1759. [20] X.F. Zhang, T. Aldahri, X.M. Tan, W.Z. Liu, L.Z. Zhang, S.W. Tang, Efficient coextraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting, Chem. Eng. Process.-Process Intensif. 147(2020)107777. [21] L.I. Barbosa, J.A. González, M.D.C. Ruiz, Extraction of lithium from bspodumene using chlorination roasting with calcium chloride, Thermochim. Acta 605(2015)63-67. [22] T.T. Hien-Dinh, V.T. Luong, R. Gieré, T. Tran, Extraction of lithium from lepidolite via iron sulphide roasting and water leaching, Hydrometallurgy 153(2015)154-159. [23] H. Su, J.Y. Ju, J. Zhang, A.F. Yi, Z. Lei, L.N. Wang, Z.W. Zhu, T. Qi, Lithium recovery from lepidolite roasted with potassium compounds, Miner. Eng. 145(2020) 106087. [24] N.a. Li, J. Guo, Z. Chang, H. Dang, X. Zhao, S. Ali, W. Li, H. Zhou, C. Sun, Aqueous leaching of lithium from simulated pyrometallurgical slag by sodium sulfate roasting, RSC Adv. 9(41)(2019)23908-23915. [25] L.L.D. Santos, R.M.D. Nascimento, S.B.C. Pergher, Beta-spodumene:Na2CO3: NaCl system calcination:A kinetic study of the conversion to lithium salt, Chem. Eng. Res. Des. 147(2019)338-345. [26] B.i. Yang, J. Zhou, W. Wang, C. Liu, D. Zhou, L. Yang, Extraction and separation of tungsten and vanadium from spent V2O5-WO3/TiO2 SCR catalysts and recovery of TiO2 and sodium titanate nanorods as adsorbent for heavy metal ions, Colloids Surf. A:Physicochem. Eng. Aspects 601(2020)124963. [27] C. Song, D. Zhou, L. Yang, J. Zhou, C. Liu, Z.-G. Chen, Recovery TiO2 and sodium titanate nanowires as Cd (II) adsorbent from waste V2O5-WO3/TiO2 selective catalytic reduction catalysts by Na2CO3-NaCl-KCl molten salt roasting method, J. Taiwan Inst. Chem. Eng. 88(2018)226-233. [28] V.T. Luong, D.J. Kang, J.W. An, M.J. Kim, T. Tran, Factors affecting the extraction of lithium from lepidolite, Hydrometallurgy 134-135(2013)54-61. [29] Y. Jiang, Y. Sun, R.D. Jacob, F. Bruno, S. Li, Novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar thermal power plants (Part I), Sol. Energy Mater. Sol. Cells 178(2018)74-83. [30] K. Verscheure, M. Campforts, M. Camp, Process for the valorization of metals from Li-ion batteries, U.S. Pat. 8840702B2(2014). [31] G.-X. REN, S.-W. XIAO, M.-Q. XIE, B. PAN, J. CHEN, F.-G. WANG, X. XIA, Recovery of valuable metals fromspent lithium ion batteries by smelting reduction process based on FeO-SiO2-Al2O3 slag system, Trans. Nonferrous Met. Soc. China 27(2)(2017)450-456. [32] M.R.B. Guerrero, J.M. Salinas Gutiérrez, M.J. Meléndez Zaragoza, A. López Ortiz, V. Collins-Martínez, Optimal slow pyrolysis of apple pomace reaction conditions for the generation of a feedstock gas for hydrogen production, Int. J. Hydrog. Energy 41(48)(2016)23232-23237. [33] S. Olivotos, M. Economou-Eliopoulos, Gibbs free energy of formation for selected platinum group minerals (PGM), Geoscience 6(1)(2016)2. [34] A. Roine, HSC, 6.0 Chemistry. Chemical reactions and equilibrium software with extensive thermochemical database and flowsheet simulation, Outokumpu Research Oy Information Center, Pori, 2006, p. 448. [35] N. Marzari, D. Vanderbilt, M.C. Payne, Ensemble density-functional theory forab-initio molecular dynamics of metals and finite-temperature insulators, Phys. Rev. Lett. 79(7)(1997)1337. [36] R.O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61(3)(1989)689-746. [37] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A)(1965) A1133-A1138. [38] John P. Perdew, Kieron Burke, Matthias Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18)(1996)3865-3868. [39] Hendrik J. Monkhorst, James D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12)(1976)5188-5192. [40] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(1992)6671-6687. |