中国化学工程学报 ›› 2022, Vol. 48 ›› Issue (8): 44-60.DOI: 10.1016/j.cjche.2021.10.008
Wenjuan Yan, Zhenchao You, Kexin Meng, Feng Du, Shuxia Zhang, Xin Jin
收稿日期:
2021-06-29
修回日期:
2021-09-13
出版日期:
2022-08-28
发布日期:
2022-09-30
通讯作者:
Xin Jin,E-mail:jamesjinxin@upc.edu.cn
基金资助:
Wenjuan Yan, Zhenchao You, Kexin Meng, Feng Du, Shuxia Zhang, Xin Jin
Received:
2021-06-29
Revised:
2021-09-13
Online:
2022-08-28
Published:
2022-09-30
Contact:
Xin Jin,E-mail:jamesjinxin@upc.edu.cn
Supported by:
摘要: Terminal olefins are important building blocks for the industry of biofuels, oligomers, and lubricants production. The industrial processes for production of olefins involving oligomerizationofethylene or cracking of petrochemical waxes have several flaws including low yield and high cost in product separation. Cross-metathesis of bio-derived unsaturated fatty esters and olefins with ethylene (ethenolysis), allows the conversion of sustainable waste biomass to various renewable olefins with much safer, less toxic, sustainable, and zero-CO2 emission processes. To our best knowledge, however, a comprehensive summary of key advances in this field (since 2017) is yet to be available, particularly on molecular features of homogeneous and heterogeneous catalysts. This paper presents a critical review on molecular structures of metal complex and oxide catalysts for ethenolysis of olefins and oleochemicals. The influence of cationic centers, coordination conditions, nature of ligands, operating conditions on catalyst performances will be systematically discussed along with relevant reaction mechanism. The key challenges for rational design of coordinated cationic hybrids have been summarized, which will provide insights to technological advancement of large-scale production of oleochemical-derived olefins.
Wenjuan Yan, Zhenchao You, Kexin Meng, Feng Du, Shuxia Zhang, Xin Jin. Cross-metathesis of biomass to olefins: Molecular catalysis bridging the gap between fossil and bio-energy[J]. 中国化学工程学报, 2022, 48(8): 44-60.
Wenjuan Yan, Zhenchao You, Kexin Meng, Feng Du, Shuxia Zhang, Xin Jin. Cross-metathesis of biomass to olefins: Molecular catalysis bridging the gap between fossil and bio-energy[J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 44-60.
[1] J.C. Mol, Catalytic metathesis of unsaturated fatty acid esters and oils, Top. Catal. 27 (1–4) (2004) 97–104 [2] O.M. Ogba, N.C. Warner, D.J. O'Leary, R.H. Grubbs, Recent advances in ruthenium-based olefin metathesis, Chem Soc Rev 47 (12) (2018) 4510–4544 [3] Q. Zhang, T.J. Wang, Y.J. Weng, H.Y. Zhang, T. Vitidsant, Y.P. Li, Q. Zhang, R. Xiao, C.G. Wang, L.L. Ma, Direct conversion of simulated propene-rich bio-syngas to liquid iso-hydrocarbons via FT-oligomerization integrated catalytic process, Energy Convers. Manag. 171 (2018) 211–221 [4] J. Schneider, M. Struve, U. Trommler, M. Schlüter, L. Seidel, S. Dietrich, S. R?nsch, Performance of supported and unsupported Fe and Co catalysts for the direct synthesis of light alkenes from synthesis gas, Fuel Process. Technol. 170 (2018) 64–78 [5] R. Beucher, R.D. Andrei, C. Cammarano, A. Galarneau, F. Fajula, V. Hulea, Selective production of propylene and 1-butene from ethylene by catalytic cascade reactions, ACS Catal. 8 (4) (2018) 3636–3640 [6] I.B. Moroz, A. Lund, M. Kaushik, L. Severy, D. Gajan, A. Fedorov, A. Lesage, C. Coperet, Specific localization of aluminum sites favors ethene-to-propene conversion on (Al) MCM-41-supported Ni(II) single sites, ACS Catal., 9 (2019) 7476-7485 [7] J.C. Mol, Application of olefin metathesis in oleochemistry: An example of green chemistry, Green Chem. 4 (1) (2002) 5–13 [8] U. Biermann, U. Bornscheuer, M.A. Meier, J.O. Metzger, H.J. Sch?fer, Oils and fats as renewable raw materials in chemistry, Angew Chem Int Ed Engl 50 (17) (2011) 3854–3871 [9] Meylemans HA, Quintana RL, Goldsmith BR, Harvey BG, Solvent-free conversion of linalool to methylcyclopentadiene dimers: A route to renewable high-density fuels, ChemSusChem 4 (4) (2011) 465–469 [10] Grand View Research Inc., Oleochemicals Market Size, Share & Trends Analysis Report By Product (Glycerol Esters, Fatty Acid Methyl Ester), By Application (Industrial, Personal Care & Cosmetics, Paints & Inks), By Region, And Segment Forecasts, 2021–2028, 2021, https://www.grandviewresearch.com/industry-analysis/oleochemicals-industry. [11] U.S. Energy Information Administration, INTERNATIONAL ENERGY OUTLOOK 2019, 2019, https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf. [12] Research And Markets , The World’s Largest Market Research Store, H1 2019 Global Ethylene Capacity and Capital Expenditure Outlook-Saudi Aramco and Exxon Lead Global Capacity Additions ( 2019 ). https://www.researchandmarkets.com/reports/4791132/h1-2019-global-ethylene-capacity-and-capital#src-pos-4) [13] J. Spekreijse, J.P. Sanders, J.H. Bitter, E.L. Scott, The future of ethenolysis in biobased chemistry, ChemSusChem 10 (3) (2017) 470–482 [14] C.P.C. Bradshaw, E.J. Howman, L. Turner, Olefin dismutation: Reactions of olefins on cobalt oxide-molybdenum oxide-alumina, J. Catal. 7 (3) (1967) 269–276 [15] E.A. Buluchevskii, L.F. Saifullina, A.V. Lavrenov, T.R. Karpova, N.A. Glazov, Ethenolysis of C5+ alkenes as a method for synthesis of propylene, Russ. J. Appl. Chem. 90 (12) (2017) 1893–1899 [16] K. Gayapan, S. Sripinun, J. Panpranot, P. Praserthdam, S. Assabumrungrat, Effect of pretreatment atmosphere of WOx/SiO2 catalysts on metathesis of ethylene and 2-butene to propylene, RSC Adv. 8 (21) (2018) 11693–11704 [17] D.L. Nascimento, A. Gawin, R. Gawin, P.A. Guńka, J. Zachara, K. Skowerski, D.E. Fogg, Integrating activity with accessibility in olefin metathesis: An unprecedentedly reactive ruthenium-indenylidene catalyst, J Am Chem Soc 141 (27) (2019) 10626–10631 [18] D.L. Nascimento, D.E. Fogg, Origin of the breakthrough productivity of ruthenium-cyclic alkyl amino carbene catalysts in olefin metathesis, J Am Chem Soc 141 (49) (2019) 19236–19240 [19] K. Bouchmella, M. Stoyanova, U. Rodemerck, D.P. Debecker, P. Hubert Mutin, Avoiding rhenium loss in non-hydrolytic synthesis of highly active Re-Si-Al olefin metathesis catalysts, Catal. Commun. 58 (2015) 183–186 [20] V. Goelden, D. Linke, E.V. Kondratenko, Investigation of the enhancing effect of solid cocatalysts on propene formation in ethene/trans-2-butene metathesis over MoOx/SiO2-Al2O3, ACS Catal. 5 (12) (2015) 7437–7445 [21] á. Balla, M. Al-Hashimi, A. Hlil, H.S. Bazzi, R. Tuba, Ruthenium-catalyzed metathesis of conjugated polyenes, ChemCatChem 8 (18) (2016) 2865–2875 [22] M. Melaimi, R. Jazzar, M. Soleilhavoup, G. Bertrand, Cyclic (alkyl)(amino)carbenes (CAACs): Recent developments, Angew Chem Int Ed Engl 56 (34) (2017) 10046–10068 [23] M.J. Koh, T.T. Nguyen, J.K. Lam, S. Torker, J. Hyvl, R.R. Schrock, A.H. Hoveyda, Molybdenum chloride catalysts for Z-selective olefin metathesis reactions, Nature 542 (7639) (2017) 80–85 [24] C.S. Higman, J.A. Lummiss, D.E. Fogg, Olefin metathesis at the dawn of implementation in pharmaceutical and specialty-chemicals manufacturing, Angew Chem Int Ed Engl 55 (11) (2016) 3552–3565 [25] S. Leimgruber, G. Trimmel, Olefin metathesis meets rubber chemistry and technology, Monatshefte Für Chemie - Chem. Mon. 146 (7) (2015) 1081–1097 [26] A. Sytniczuk, M. Milewski, A. Kajetanowicz, K. Grela, Preparation of macrocyclic musks via olefin metathesis: Comparison with classical syntheses and recent advances, Russ. Chem. Rev. 89 (4) (2020) 469–490 [27] A. Sytniczuk, A. Leszczyńska, A. Kajetanowicz, K. Grela, Preparation of musk-smelling macrocyclic lactones from biomass: Looking for the optimal substrate combination, ChemSusChem 11 (18) (2018) 3157–3166 [28] A. Sytniczuk, G. Forcher, D.B. Grotjahn, K. Grela, Sequential alkene isomerization and ring-closing metathesis in production of macrocyclic musks from biomass, Chemistry 24 (41) (2018) 10403–10408 [29] C. Bruneau, C. Fischmeister, D. Mandelli, W.A. Carvalho, E.N. dos Santos, P.H. Dixneuf, L. Sarmento Fernandes, Transformations of terpenes and terpenoids via carbon–carbon double bond metathesis, Catal. Sci. Technol. 8 (16) (2018) 3989–4004 [30] V. Yelchuri, K. Srikanth, R.B.N. Prasad, M.S.L. Karuna, Olefin metathesis of fatty acids and vegetable oils, J. Chem. Sci. 131 (5) (2019) 1–16 [31] A. Kajetanowicz, K. Grela, Nitro and other electron withdrawing group activated ruthenium catalysts for olefin metathesis reactions, Angew Chem Int Ed Engl 60 (25) (2021) 13738–13756 [32] J. Bidange, C. Fischmeister, C. Bruneau, Ethenolysis: A green catalytic tool to cleave carbon-carbon double bonds, Chemistry 22 (35) (2016) 12226–12244 [33] K.F. Liu, H.W. Xu, F. Meng, Z. Wang, D. Zhu, G. Feng, H.C. Xiao, Y.C. Tang, Ruthenium catalyzed ethenolysis of internal olefin generated from Fischer-tropsch process to produce α-olefin, Chem. Lett. 48 (10) (2019) 1236–1239 [34] A. Kajetanowicz, A. Sytniczuk, K. Grela, Metathesis of renewable raw materials—influence of ligands in the indenylidene type catalysts on self-metathesis of methyl oleate and cross-metathesis of methyl oleate with (Z)-2-butene-1, 4-diol diacetate, Green Chem. 16 (3) (2014) 1579 [35] A. Sytniczuk, A. Kajetanowicz, K. Grela, Fishing for the right catalyst for the cross-metathesis reaction of methyl oleate with 2-methyl-2-butene, Catal. Sci. Technol. 7 (6) (2017) 1284–1296 [36] V. Paradiso, V. Bertolasi, C. Costabile, T. Caruso, M. D?browski, K. Grela, F. Grisi, Expanding the family of Hoveyda-Grubbs catalysts containing unsymmetrical NHC ligands, Organometallics 36 (19) (2017) 3692–3708 [37] P.S. Engl, A. Fedorov, C. Copéret, A. Togni, N-trifluoromethyl NHC ligands provide selective ruthenium metathesis catalysts, Organometallics 35 (6) (2016) 887–893 [38] Desnelli, D. Mujahidin, Y. Permana, C.L. Radiman, The olefin reaction between crude palm oil fatty acid methyl ester (CPO FAME) and ethylene using Grubbs II catalyst, in: H. Hayashi, R. Read, K. Awang (Eds.) 3rd International Seminar on Chemistry, 2015, 44-48. [39] B.?. ?ztürk, B. Topo?lu, S. Karabulut ?ehito?lu, Metathesis reactions of rapeseed oil-derived fatty acid methyl esters induced by monometallic and homobimetallic ruthenium complexes, Eur. J. Lipid Sci. Technol. 117 (2) (2015) 200–208 [40] B.G. Harvey, C.M. Sahagun, A.J. Guenthner, T.J. Groshens, L.R. Cambrea, J.T. Reams, J.M. Mabry, A high-performance renewable thermosetting resin derived from eugenol, ChemSusChem 7 (7) (2014) 1964–1969 [41] E. Peris, Smart N-heterocyclic carbene ligands in catalysis, Chem Rev 118 (19) (2018) 9988–10031 [42] X. Shen, T.T. Nguyen, M.J. Koh, D.M. Xu, A.W. Speed, R.R. Schrock, A.H. Hoveyda, Kinetically E-selective macrocyclic ring-closing metathesis, Nature 541 (7637) (2017) 380–385 [43] A. Cho?uj, A. Zieliński, K. Grela, M.J. Chmielewski, Metathesis@MOF: Simple and robust immobilization of olefin metathesis catalysts inside (Al)MIL-101-NH2, ACS Catal. 6 (10) (2016) 6343–6349 [44] Wyr?bek P, Ma?ecki P, Sytniczuk A, Ko?nik W, Gawin A, Kostrzewa J, Kajetanowicz A, Grela K, Looking for the noncyclic(amino)(alkyl)carbene ruthenium catalyst for ethenolysis of ethyl oleate: Selectivity is on target, ACS Omega 3 (12) (2018) 18481–18488 [45] A. Trasarti, E. Gonzalez, P. Nieres, C. Apesteguia, Plant oil valorization by cross-metathesis reactions: Synthesis of fine chemicals from methyl oleate, Lat. Am. Appl. Res. - Int. J. 50 (2) (2020) 139–144 [46] R. Gawin, A. Kozakiewicz, P.A. Guńka, P. D?browski, K. Skowerski, Bis(cyclic alkyl amino carbene) ruthenium complexes: A versatile, highly efficient tool for olefin metathesis, Angew Chem Int Ed Engl 56 (4) (2017) 981–986 [47] V.M. Marx, A.H. Sullivan, M. Melaimi, S.C. Virgil, B.K. Keitz, D.S. Weinberger, G. Bertrand, R.H. Grubbs, Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis, Angew Chem Int Ed Engl 54 (6) (2015) 1919–1923 [48] D.R. Anderson, T. Ung, G. Mkrtumyan, G. Bertrand, R.H. Grubbs, Y. Schrodi, Kinetic selectivity of olefin metathesis catalysts bearing cyclic (alkyl)(amino)carbenes, Organometallics 27 (4) (2008) 563–566 [49] S. Byun, H. Seo, J.-H. Choi, J.Y. Ryu, J. Lee, W.-j. Chung, S. Hong, Fluoro-imidazopyridinylidene ruthenium catalysts for cross metathesis with ethylene, Organometallics, 38 (2019) 4121-4132 [50] G.S. Forman, R.M. Bellabarba, R.P. Tooze, A.M.Z. Slawin, R. Karch, R. Winde, Metathesis of renewable unsaturated fatty acid esters catalysed by a phoban-indenylidene ruthenium catalyst, J. Organomet. Chem. 691 (24–25) (2006) 5513–5516 [51] P.D. Nieres, J. Zelin, A.F. Trasarti, C.R. Apesteguía, Heterogeneous catalysis for valorisation of vegetable oils via metathesis reactions: Ethenolysis of methyl oleate, Catal. Sci. Technol. 6 (17) (2016) 6561–6568 [52] S.C. Marinescu, R.R. Schrock, P. Müller, A.H. Hoveyda, Ethenolysis reactions catalyzed by imido alkylidene monoaryloxide monopyrrolide (MAP) complexes of molybdenum, J. Am. Chem. Soc. 131 (31) (2009) 10840–10841 [53] P. Ma?ecki, K. Gajda, R. Gajda, K. Wo?niak, B. Trzaskowski, A. Kajetanowicz, K. Grela, Specialized ruthenium olefin metathesis catalysts bearing bulky unsymmetrical NHC ligands: Computations, synthesis, and application, ACS Catal. 9 (1) (2019) 587–598 [54] A. Ullah, M. Arshad, Remarkably efficient microwave-assisted cross-metathesis of lipids under solvent-free conditions, ChemSusChem 10 (10) (2017) 2167–2174 [55] J. Pollini, V. Bragoni, L.J. Goo?en, Synthesis of a tyrosinase inhibitor by consecutive ethenolysis and cross-metathesis of crude cashew nutshell liquid, Beilstein J Org Chem 14 (2018) 2737–2744 [56] Y.P. Shi, P.C.J. Kamer, D.J. Cole-Hamilton, Synthesis of pharmaceutical drugs from cardanol derived from cashew nut shell liquid, Green Chem. 21 (5) (2019) 1043–1053 [57] J. Zimmerer, D. Pingen, S.K. Hess, T. Koengeter, S. Mecking, Integrated extraction and catalytic upgrading of microalgae lipids in supercritical carbon dioxide, Green Chem. 21 (9) (2019) 2428–2435 [58] C. Schotten, D. Plaza, S. Manzini, S.P. Nolan, S.V. Ley, D.L. Browne, A. Lapkin, Continuous flow metathesis for direct valorization of food waste: An example of cocoa butter triglyceride, ACS Sustain Chem Eng 3 (7) (2015) 1453–1459 [59] T. Shinde, V. Varga, M. Polá?ek, M. Horá?ek, N. ?ilková, H. Balcar, Metathesis of cardanol over Ru catalysts supported on mesoporous molecular sieve SBA-15, Appl. Catal. A: Gen. 478 (2014) 138–145 [60] Q.B. Li, T. Zhou, H.Q. Yang, Encapsulation of Hoveyda–Grubbs2nd catalyst within yolk–shell structured silica for olefin metathesis, ACS Catal. 5 (4) (2015) 2225–2231 [61] J. Morvan, M. Mauduit, G. Bertrand, R. Jazzar, Cyclic (alkyl)(amino)carbenes (CAACs) in ruthenium olefin metathesis, ACS Catal. 11 (3) (2021) 1714–1748 [62] L.J. H?ller, M.J. Page, S. Erhardt, S.A. MacGregor, M.F. Mahon, M.A. Naser, A. Vélez, M.K. Whittlesey, Experimental and computational investigation of C-N bond activation in ruthenium N-heterocyclic carbene complexes, J Am Chem Soc 132 (51) (2010) 18408–18416 [63] S. Hong, A. Chlenov, M. Day, R. Grubbs, Double C□H activation of an N-heterocyclic carbene ligand in a ruthenium olefin metathesis catalyst, Angew. Chem. Int. Ed. 46 (27) (2007) 5148–5151 [64] G.A. Bailey, M. Foscato, C.S. Higman, C.S. Day, V.R. Jensen, D.E. Fogg, Bimolecular coupling as a vector for decomposition of fast-initiating olefin metathesis catalysts, J Am Chem Soc 140 (22) (2018) 6931–6944 [65] J. Robbins, G.C. Bazan, J.S. Murdzek, M.B. O'Regan, R.R. Schrock, Reduction of molybdenum imido-alkylidene complexes in the presence of olefins to give molybdenum(IV) complexes, Organometallics 10 (8) (1991) 2902–2907 [66] L.P.H. Lopez, R.R. Schrock, Formation of dimers that contain unbridged W(IV)/W(IV) double bonds, J. Am. Chem. Soc. 126 (31) (2004) 9526–9527 [67] S.H. Hong, A.G. Wenzel, T.T. Salguero, M.W. Day, R.H. Grubbs, Decomposition of ruthenium olefin metathesis catalysts, J. Am. Chem. Soc. 129 (25) (2007) 7961–7968 [68] Y. Schrodi, T. Ung, A. Vargas, G. Mkrtumyan, C.W. Lee, T.M. Champagne, R.L. Pederson, S.H. Hong, Ruthenium olefin metathesis catalysts for the ethenolysis of renewable feedstocks, CLEAN - Soil Air Water 36 (8) (2008) 669–673 [69] Parvulescu VI, Hardacre C, Catalysis in ionic liquids, Chem Rev 107 (6) (2007) 2615–2665 [70] P. Rouge, K.C. Szeto, B. Yassine, N. Merle, A. De Mallmann, L. Delevoye, R. Gauvin, M. Taoufik, Ethenolysis of renewable methyl oleate catalyzed by readily accessible supported group VI oxo catalysts, Organometallics, 39 (2020) 1105-1111 [71] M. D?browski, P. Wyr?bek, D. Trzybiński, K. Wo?niak, K. Grela, In a quest for selectivity paired with activity: A ruthenium olefin metathesis catalyst bearing an unsymmetrical phenanthrene-based N-heterocyclic carbene, Chem. Eur. J. 26 (17) (2020) 3782–3794 [72] A. Kajetanowicz, M. Chwalba, A. Gawin, A. Tracz, K. Grela, Non-glovebox ethenolysis of ethyl oleate and FAME at larger scale utilizing a cyclic (alkyl)(amino)carbene ruthenium catalyst, Eur. J. Lipid Sci. Technol. 122 (1) (2020) 1900263 [73] F.B.H. Ahmad, S. Hamdan, M.A. Yarmo, A. Alimunir, Co-metathesis reaction of crude palm oil and ethene, J. Am. Oil Chem. Soc. 72 (6) (1995) 757–758 [74] S. Warwel, F. Brüse, C. Demes, M. Kunz, M. Rüsch gen Klaas, Polymers and surfactants on the basis of renewable resources, Chemosphere 43 (1) (2001) 39–48 [75] S. Warwel, F. Brüse, C. Demes, M. Kunz, Polymers and polymer building blocks from meadowfoam oil, Ind. Crop. Prod. 20 (3) (2004) 301–309 [76] R.A. Pradhan, M. Arshad, A. Ullah, Solvent-free rapid ethenolysis of fatty esters from spent hen and other lipidic feedstock with high turnover numbers, J. Ind. Eng. Chem. 84 (2020) 42–45 [77] I.O. Mohamed, Enzymatic synthesis of cocoa butter equivalent from olive oil and palmitic-stearic fatty acid mixture, Appl Biochem Biotechnol 175 (2) (2015) 757–769 [78] M. Dinger, J. Mol, High turnover numbers with ruthenium-based metathesis catalysts, Adv. Synth. Catal. 344 (6–7) (2002) 671 [79] Patel J, Elaridi J, Jackson WR, Robinson AJ, Serelis AK, Such C, Cross-metathesis of unsaturated natural oils with 2-butene. High conversion and productive catalyst turnovers, Chem Commun (Camb) (44) (2005) 5546–5547 [80] J. Pastva, J. ?ejka, N. ?ilková, O. Mestek, M. Rangus, H. Balcar, Hoveyda-Grubbs first generation type catalyst immobilized on mesoporous molecular sieves, J. Mol. Catal. A: Chem. 378 (2013) 184–192 [81] H. Balcar, J. ?ejka, Mesoporous molecular sieves as advanced supports for olefin metathesis catalysts, Coord. Chem. Rev. 257 (21–22) (2013) 3107–3124 [82] H. Balcar, J. ?ejka, SBA-15 as a support for effective olefin metathesis catalysts, Catalysts 9 (9) (2019) 743 [83] F. Bigi, C.G. Piscopo, G. Predieri, G. Sartori, R. Scotti, R. Zanoni, R. Maggi, Molybdenum-MCM-41 silica as heterogeneous catalyst for olefin epoxidation, J. Mol. Catal. A: Chem. 386 (2014) 108–113 [84] C. Lin, K. Tao, H.B. Yu, D.Y. Hua, S.H. Zhou, Enhanced catalytic performance of molybdenum-doped mesoporous SBA-15 for metathesis of 1-butene and ethene to propene, Catal. Sci. Technol. 4 (11) (2014) 4010–4019 [85] P. Zhao, L. Ye, Z. Sun, B.T.W. Lo, H. Woodcock, C. Huang, C. Tang, A.I. Kirkland, D. Mei, S.C.E. Tsang, Entrapped single tungstate site in zeolite for cooperative catalysis of olefin metathesis with Bronsted acid site, J. Am. Chem. Soc., 140 (2018) 6661-6667 [86] G.X. Zhao, H.M. Liu, J.H. Ye, Constructing and controlling of highly dispersed metallic sites for catalysis, Nano Today 19 (2018) 108–125 [87] D. Mandelli, M.J.D.M. Jannini, R. Buffon, U. Schuchardt, Ethenolysis of esters of vegetable oils: Effect of B2O3 addition to Re2O7/SiO2·Al2O3-SnBu4 and CH3 ReO3/SiO2·Al2O3 metathesis catalysts, J. Am. Oil Chem. Soc. 73 (2) (1996) 229–232 [88] B.B. Marvey, J.A.K. du Plessis, H.C.M. Vosloo, J.C. Mol, Metathesis of unsaturated fatty acid esters derived from South African sunflower oil in the presence of a 3 wt.% Re2O7/SiO2-Al2O3/SnBu4 catalyst, J. Mol. Catal. A: Chem. 201 (1–2) (2003) 297–308 [89] M. Sibeijn, J.C. Mol, Ethenolysis of methyl oleate over supported Re-based catalysts, J. Mol. Catal. 76 (1–3) (1992) 345–358 [90] M. Lee, Y.H. Han, D.W. Hwang, Cross-metathesis of methyl oleate with ethylene over methyltrioxorhenium supported on ZnAl2O4 as a heterogeneous catalyst, Catal. Commun. 144 (2020) 106088 [91] J. Pastva, K. Skowerski, S.J. Czarnocki, N. ?ilková, J. ?ejka, Z. Bastl, H. Balcar, Ru-based complexes with quaternary ammonium tags immobilized on mesoporous silica as olefin metathesis catalysts, ACS Catal. 4 (9) (2014) 3227–3236 [92] L.F. Lin, A.M. Sheveleva, I. da Silva, C.M.A. Parlett, Z.M. Tang, Y.M. Liu, M.T. Fan, X. Han, J.H. Carter, F. Tuna, E.J.L. McInnes, Y.Q. Cheng, L.L. Daemen, S. Rudi?, A.J. Ramirez-Cuesta, C.C. Tang, S.H. Yang, Quantitative production of butenes from biomass-derived γ-valerolactone catalysed by hetero-atomic MFI zeolite, Nat Mater 19 (1) (2020) 86–93 [93] Z. Cheng, C.S. Lo, Propagation of olefin metathesis to propene on WO3 catalysts: A mechanistic and kinetic study, ACS Catal. 5 (1) (2015) 59–72 [94] J.F. Wu, A. Ramanathan, W.K. Snavely, H.D. Zhu, A. Rokicki, B. Subramaniam, Enhanced metathesis of ethylene and 2-butene on tungsten incorporated ordered mesoporous silicates, Appl. Catal. A: Gen. 528 (2016) 142–149 [95] H. Liu, K. Tao, H.B. Yu, C. Zhou, Z. Ma, D.S. Mao, S.H. Zhou, Effect of pretreatment gases on the performance of WO3/SiO2 catalysts in the metathesis of 1-butene and ethene to propene, Comptes Rendus Chimie 18 (6) (2015) 644–653 [96] W.L. Jiang, X.H. Mo, S. Feng, F. Xu, G.L. Zhou, H.J. Zhou, C.M. Xu, B. Chen, Effect of MgO on WO3/SiO2-catalyzed light olefin metathesis using different feedstocks, Mol. Catal. 442 (2017) 49–56 [97] W.L. Jiang, X.H. Mo, S. Feng, R.L. Huang, G.L. Zhou, H.J. Zhou, Metathesis of ethylene and cis-2-butene under the catalysis of magnesium-tungsten oxide catalysts, React. Kinetics Mech. Catal. 122 (1) (2017) 485–500 [98] S. Maksasithorn, P. Praserthdam, K. Suriye, D.P. Debecker, Preparation of super-microporous WO3-SiO2 olefin metathesis catalysts by the aerosol-assisted Sol-gel process, Microporous Mesoporous Mater. 213 (2015) 125–133 [99] N. Poovarawan, K. Suriye, J. Panpranot, W. Limsangkass, F.J. Santos Cadete Aires, P. Praserthdam, Effect of dispersion of the active phase on the activity and coke formation over WO3/SiO2 catalysts in the metathesis of ethylene and 2-butene, Catal. Lett. 145 (10) (2015) 1868–1875 [100] K. Gayapan, S. Sripinun, J. Panpranot, P. Praserthdam, S. Assabumrungrat, Effects of calcination and pretreatment temperatures on the catalytic activity and stability of H2-treated WO3/SiO2 catalysts in metathesis of ethylene and 2-butene, RSC Adv. 8 (50) (2018) 28555–28568 [101] G.Z. Zuo, Y.B. Xu, J. Zheng, F. Jiang, X.H. Liu, Investigation on converting 1-butene and ethylene into propene via metathesis reaction over W-based catalysts, RSC Adv. 8 (15) (2018) 8372–8384 [102] H. Liu, K. Tao, P.P. Zhang, W. Xu, S.H. Zhou, Enhanced catalytic performance for metathesis reactions over ordered tungsten and aluminum co-doped mesoporous KIT-6 catalysts, New J. Chem. 39 (10) (2015) 7971–7978 [103] B. Hu, C.R. Xiong, K. Tao, S.H. Zhou, Metathesis of 1-butene and ethene to propene over mesoporous W-KIT-6 catalysts: The influence of Si/W ratio, J. Porous Mater. 22 (3) (2015) 613–620 [104] W. Xu, C. Lin, H. Liu, H.B. Yu, K. Tao, S.H. Zhou, Tandem catalytic conversion of 1-butene and ethene to propene over combined mesoporous W-FDU-12 and MgO catalysts, RSC Adv. 5 (30) (2015) 23981–23989 [105] D.R. Hua, Z. Zhou, Q.Q. Hua, J. Li, X.N. Lu, Y.R. Xie, H. Xiao, M. Li, J. Yang, Transformation of 2-butene into propene on WO3/MCM-48: Metathesis and isomerization of n-butene, Catalysts 8 (12) (2018) 585 [106] S. Vorakitkanvasin, S.K.N. Ayudhya, K. Suriye, P. Praserthdam, J. Panpranot, Enhanced metathesis activity of low loading Re2O7/Al2O3 catalysts for propylene production by using aluminum nitrate as Al2O3 precursor, Appl. Catal. A: Gen. 517 (2016) 39–46 [107] P.S. Engl, C.B. Santiago, C.P. Gordon, W.C. Liao, A. Fedorov, C. Copéret, M.S. Sigman, A. Togni, Correction to “exploiting and understanding the selectivity of Ru-N-heterocyclic carbene metathesis catalysts for the ethenolysis of cyclic olefins to α, ω-dienes”, J Am Chem Soc 140 (51) (2018) 18227–18228 [108] T. Otroshchenko, O. Reinsdorf, D. Linke, E.V. Kondratenko, A chemical titration method for quantification of carbenes in Mo- or W-containing catalysts for metathesis of ethylene with 2-butenes: Verification and application potential, Catal. Sci. Technol. 9 (20) (2019) 5660–5667 [109] S.M. Sen, R. Schowner, D.A. Imbrich, W. Frey, M. Hunger, M.R. Buchmeiser, Neutral and cationic molybdenum imido alkylidene N-heterocyclic carbene complexes: Reactivity in selected olefin metathesis reactions and immobilization on silica, Chemistry 21 (39) (2015) 13778–13787 [110] K. Kurleto, F. Tielens, J. Handzlik, Isolated Molybdenum(VI) and tungsten(VI) oxide species on partly dehydroxylated silica: A computational perspective, J. Phys. Chem. C., 124 (2020) 3002-3013 [111] M.A. Ibrahim, M.N. Akhtar, J. ?ejka, E. Montanari, H. Balcar, M. Kub?, S.S. Al-Khattaf, Metathesis of 2-pentene over Mo and W supported mesoporous molecular sieves MCM-41 and SBA-15, J. Ind. Eng. Chem. 53 (2017) 119–126 [112] W.L. Xie, X.L. Yang, M.L. Fan, Novel solid base catalyst for biodiesel production: Mesoporous SBA-15 silica immobilized with 1, 3-dicyclohexyl-2-octylguanidine, Renew. Energy 80 (2015) 230–237 [113] P.J.-L. Hérisson, Y. Chauvin, Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques, Macromol. Chem. Phys., 141 (1971) 161-176 [114] J.C. Mol, Industrial applications of olefin metathesis, J. Mol. Catal. A: Chem. 213 (1) (2004) 39–45 [115] A. Andreini, X.D. Xu, J.C. Mol, Activity of Re2O7/SiO2·Al2O3 catalysts for propene metathesis and the influence of alkyltin promotors, Appl. Catal. 27 (1) (1986) 31–40 [116] E.L. Lee, I.E. Wachs, Molecular design and in situ spectroscopic investigation of multilayered supported M1Ox/M2Ox/SiO2 catalysts, J. Phys. Chem. C 112 (51) (2008) 20418–20428 [117] L.M. Kustov, D.B. Furman, Catalytic synthesis of octadiene-1, 7 from ethylene and cyclohexene, J. Organomet. Chem. 867 (2018) 261–265 [118] N. Peschek, K.J. Wannowius, H. Plenio, The initiation reaction of Hoveyda–Grubbs complexes with ethene, ACS Catal. 9 (2) (2019) 951–959 [119] E.F. van der Eide, W.E. Piers, Mechanistic insights into the ruthenium-catalysed diene ring-closing metathesis reaction, Nat Chem 2 (7) (2010) 571–576 [120] I.W. Ashworth, I.H. Hillier, D.J. Nelson, J.M. Percy, M.A. Vincent, Olefin metathesis by Grubbs–Hoveyda complexes: Computational and experimental studies of the mechanism and substrate-dependent kinetics, ACS Catal. 3 (9) (2013) 1929–1939 [121] A. Poater, F. Ragone, A. Correa, L. Cavallo, Comparison of different ruthenium-alkylidene bonds in the activation step with N-heterocyclic carbene Ru-catalysts for olefins metathesis, Dalton Trans 40 (42) (2011) 11066–11069 [122] K. Paredes-Gil, X. Solans-Monfort, L. Rodriguez-Santiago, M. Sodupe, P. Jaque, DFT study on the relative stabilities of substituted ruthenacyclobutane intermediates involved in olefin cross-metathesis reactions and their interconversion pathways, Organometallics 33 (21) (2014) 6065–6075 [123] R.D. Andrei, M.I. Popa, C. Cammarano, V. Hulea, Nickel and molybdenum containing mesoporous catalysts for ethylene oligomerization and metathesis, New J. Chem. 40 (5) (2016) 4146–4152 [124] L.L. Xu, Z.C. Zhao, R.R. Zhao, R. Yu, W.P. Zhang, Effects of magnesium modification on the catalytic performances of HZSM-5 zeolite for the conversion of ethene to propene, Acta Phys. - Chimica Sin. 35 (1) (2019) 92–100 |
[1] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction[J]. 中国化学工程学报, 2023, 60(8): 165-172. |
[2] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination[J]. 中国化学工程学报, 2023, 59(7): 193-199. |
[3] | Zijie Zhang, Qianyu Zha, Ying Liu, Zhibing Zhang, Jia Liu, Zheng Zhou. Study on the epoxidation of olefins with H2O2 catalyzed by biquaternary ammonium phosphotungstic acid[J]. 中国化学工程学报, 2023, 58(6): 146-154. |
[4] | Xinyao Sun, Liu Zhao, Xu Hou, Hao Zhou, Huimin Qiao, Chenggong Song, Jing Huang, Enxian Yuan. Screening non-noble metal oxides to boost the low-temperature combustion of polyethylene waste in air[J]. 中国化学工程学报, 2023, 58(6): 155-162. |
[5] | Libing Yu, Qiuyan Huang, Jing Wu, Erhong Song, Beibei Xiao. Spatial-five coordination promotes the high efficiency of CoN4 moiety in graphene-based bilayer for oxygen reduction electrocatalysis: A density functional theory study[J]. 中国化学工程学报, 2023, 54(2): 106-113. |
[6] | Juan Xu, Ping Zhu, Islam H. El Azab, Ben Bin Xu, Zhanhu Guo, Ashraf Y. Elnaggar, Gaber A.M. Mersal, Xiangyi Liu, Yunfei Zhi, Zhiping Lin, Hassan Algadi, Shaoyun Shan. An efficient bifunctional Ni-Nb2O5 nanocatalysts for the hydrodeoxygenation of anisole[J]. 中国化学工程学报, 2022, 49(9): 187-197. |
[7] | Yimin Zhang, Ruiming Zeng, Yun Zu, Linhua Zhu, Yi Mei, Yongming Luo, Dedong He. Low-temperature dry reforming of methane tuned by chemical speciations of active sites on the SiO2 and γ-Al2O3 supported Ni and Ni-Ce catalysts[J]. 中国化学工程学报, 2022, 48(8): 76-90. |
[8] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries[J]. 中国化学工程学报, 2022, 47(7): 185-192. |
[9] | Xiao Zhao, Xuan Shi, Zhongshun Chen, Long Xu, Chengyi Dai, Yazhou Zhang, Xinwen Guo, Dongyuan Yang, Xiaoxun Ma. Efficient conversion of benzene and syngas to toluene and xylene over ZnO-ZrO2&H-ZSM-5 bifunctional catalysts[J]. 中国化学工程学报, 2022, 45(5): 203-210. |
[10] | Bo Wu, Xing Yu, Min Huang, Liangshu Zhong, Yuhan Sun. Rh single atoms embedded in CeO2 nanostructure boost CO2 hydrogenation to HCOOH[J]. 中国化学工程学报, 2022, 43(3): 62-69. |
[11] | Jun Chen, Liandong Li, Liu Yang, Chang Chen, Shitao Wang, Yan Huang, Dapeng Cao. A dual metal-organic framework strategy for synthesis of FeCo@NC bifunctional oxygen catalysts for clean energy application[J]. 中国化学工程学报, 2022, 43(3): 161-168. |
[12] | Vitória M. Almeida, Carla A. Orge, M. Fernando R. Pereira, O. Salomé G.P. Soares. O3 based advanced oxidation for ibuprofen degradation[J]. 中国化学工程学报, 2022, 42(2): 277-284. |
[13] | Xu Hou, Bochong Chen, Zhenzhou Ma, Jintao Zhang, Yuanhang Ning, Donghe Zhang, Liu Zhao, Enxian Yuan, Tingting Cui. Empirical modeling of normal/cyclo-alkanes pyrolysis to produce light olefins[J]. 中国化学工程学报, 2022, 42(2): 389-398. |
[14] | Hongbin Shi, Qing Liu, Xiaofeng Dai, Teng Zhang, Yuling Shi, Tao Wang. Magnetic graphene oxide-anchored Ni/Cu nanoparticles with a Cu-rich surface for transfer hydrogenation of nitroaromatics[J]. 中国化学工程学报, 2022, 50(10): 235-246. |
[15] | Ce Du, Linet Gapu Chizema, Emmerson Hondo, Mingliang Tong, Qingxiang Ma, Xinhua Gao, Ruiqin Yang, Peng Lu, Noritatsu Tsubaki. One-step conversion of syngas to light olefins over bifunctional metal-zeolite catalyst[J]. 中国化学工程学报, 2021, 36(8): 101-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||