[1] V. Verdoliva, M. Saviano, S. de Luca, Zeolites as acid/basic solid catalysts: Recent synthetic developments, Catalysts 9 (3) (2019) 248. 10.3390/catal9030248 [2] H. Bateni, C. Able, Development of heterogeneous catalysts for dehydration of methanol to dimethyl ether: A review, Catal. Ind. 11 (1) (2019) 7–33. 10.1134/s2070050419010045 [3] R.A. Arnold, J.M. Hill, Catalysts for gasification: A review, Sustain. Energy Fuels 3 (3) (2019) 656–672. 10.1039/c8se00614h [4] R. Tomar, K. Ebitani, R. Chandra, Hydrotalcite-supported ceria nanoparticles as a heterogeneous catalyst for one-pot synthesis of imines under atmospheric air, ChemistrySelect 4 (12) (2019) 3577–3581.10.1002/slct.201900750 [5] R. Tomar, K. Ebitani, R. Chandra, Hydrotalcite-supported ceria nanoparticles as a heterogeneous catalyst for one-pot synthesis of imines under atmospheric air, ChemistrySelect 4 (12) (2019) 3577–3581.10.1002/slct.201900750 [6] R.K. Kankala, Y.H. Han, J. Na, C.H. Lee, Z. Sun, S.B. Wang, T. Kimura, Y.S. Ok, Y. Yamauchi, A.Z. Chen, K.C. Wu, Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles, Adv. Mater. 32 (23) (2020) e1907035.https://pubmed.ncbi.nlm.nih.gov/32319133/ [7] E. Doustkhah, J.J. Lin, S. Rostamnia, C. Len, R. Luque, X.L. Luo, Y. Bando, K.C.W. Wu, J. Kim, Y. Yamauchi, Y. Ide, Development of sulfonic-acid-functionalized mesoporous materials: Synthesis and catalytic applications, Chemistry 25 (7) (2019) 1614–1635.https://pubmed.ncbi.nlm.nih.gov/30457683/ [8] J. Wang, Y.L. Xu, B. Ding, Z. Chang, X.G. Zhang, Y. Yamauchi, K.C.W. Wu, Titelbild: Confined self-assembly in two-dimensional interlayer space: Monolayered mesoporous carbon nanosheets with in-plane orderly arranged mesopores and a highly graphitized framework (angew. chem. 11/2018), Angew. Chem. 130 (11) (2018) 2777.https://doi.org/10.1002/ange.201801793 [9] X. Hong, W. Chen, G.Q. Zhang, Q.M. Wu, C. Lei, Q.Y. Zhu, X.J. Meng, S.C. Han, A.M. Zheng, Y.H. Ma, A.N. Parvulescu, U. Müller, W.P. Zhang, T. Yokoi, X.H. Bao, B. Marler, D.E. de Vos, U. Kolb, F.S. Xiao, Direct synthesis of aluminosilicate IWR zeolite from a strong interaction between zeolite framework and organic template, J. Am. Chem. Soc. 141 (45) (2019) 18318–18324.https://doi.org/10.1021/jacs.9b09903 [10] J. Diwakar, N. Viswanadham, S.K. Saxena, S. Kumar, A.H. Al-Muhtaseb, Liquid-phase solvent-less reactions for value addition of glycerol and phenols over nano porous aluminosilicates, Mater. Today Commun. 15 (2018) 260–268.10.1016/j.mtcomm.2018.03.014 [11] X. Ma, S.F. Li, Z.D. Yuan, S.H. Yao, Y.F. Jia, S.F. Wang, Stabilization of scorodite by aluminum silicate microencapsulation, J. Environ. Eng. 145 (4) (2019) 04019010.https://doi.org/10.1061/(asce)ee.1943-7870.0001511 [12] L.Y. Li, W.L. Han, Z.C. Tang, J.Y. Zhang, G.X. Lu, Hard-template synthesis of three-dimensional mesoporous Cu–Ce based catalysts with tunable architectures and their application in the CO catalytic oxidation, RSC Adv. 6 (69) (2016) 64247–64257.https://doi.org/10.1039/c6ra12384h [13] W. Khan, X. Jia, Z. Wu, J. Choi, Catalysts 9 (2019) 1-23. [14] S. Shirani Lapari, Z. Ramli, S. Triwahyono, Effect of different templates on the synthesis of mesoporous sodalite, J. Chem. 2015 (2015) 272613.10.1155/2015/272613 [15] C.A. Bradley, M.J. McMurdo, T.D. Tilley, Selective catalytic cyclohexene oxidation using titanium-functionalized silicone nanospheres, J. Phys. Chem. C 111 (47) (2007) 17570–17579.https://doi.org/10.1021/jp074512c [16] B.R. Wang, T. Guo, X.X. Peng, F.B. Chen, M. Lin, C.J. Xia, B. Zhu, W.L. Liao, Y.B. Luo, X.T. Shu, Molybdenum-confined hierarchical titanium silicalite-1: The synthesis, characterization, and catalytic activity in alkene oxidation, Ind. Eng. Chem. Res. 59 (3) (2020) 1093–1100.10.1021/acs.iecr.9b05340 [17] A. Solé-Daura, T. Zhang, H. Fouilloux, C. Robert, C.M. Thomas, L.M. Chamoreau, J.J. Carbó, A. Proust, G. Guillemot, J.M. Poblet, Catalyst design for alkene epoxidation by molecular analogues of heterogeneous titanium-silicalite catalysts, ACS Catal. 10 (8) (2020) 4737–4750.https://doi.org/10.1021/acscatal.9b05147 [18] A. Dali, I. Rekkab-Hammoumraoui, A. Choukchou-Braham, R. Bachir, Allylic oxidation of cyclohexene over ruthenium-doped titanium-pillared clay, RSC Adv. 5 (37) (2015) 29167–29178.https://doi.org/10.1039/c4ra17129b [19] N. Agasti, M.A. Astle, G.A. Rance, J. Alves Fernandes, J. Dupont, A.N. Khlobystov, Cerium oxide nanoparticles inside carbon nanoreactors for selective allylic oxidation of cyclohexene, Nano Lett. 20 (2) (2020) 1161–1171.https://doi.org/10.1021/acs.nanolett.9b04579 [20] S. Pattisson, O. Rogers, K. Whiston, S.H. Taylor, G.J. Hutchings, Low temperature solvent-free allylic oxidation of cyclohexene using graphitic oxide catalysts, Catal. Today 357 (2020) 3–7.10.1016/j.cattod.2019.04.053 [21] S. Farahmand, M. Ghiaci, Highly selective allylic oxidation of cyclohexene to 2-cyclohexen-1-one under mild conditions over vanadyl-porphyrin implanted onto the amino-functionalized SBA-15, Microporous Mesoporous Mater. 288 (2019) 109560.10.1016/j.micromeso.2019.06.022 [22] Y.H. Cao, H. Yu, F. Peng, H.J. Wang, Selective allylic oxidation of cyclohexene catalyzed by nitrogen-doped carbon nanotubes, ACS Catal. 4 (5) (2014) 1617–1625.https://doi.org/10.1021/cs500187q [23] M. Nakada, A. Nakamura, Allylic oxidations in natural product synthesis, Synthesis 45 (11) (2013) 1421–1451.https://doi.org/10.1055/s-0033-1338426 [24] A. Alfayate, C. Márquez-Álvarez, M. Grande-Casas, M. Sánchez-Sánchez, J. Pérez-Pariente, Ti(III)APO-5 materials as selective catalysts for the allylic oxidation of cyclohexene: Effect of Ti source and Ti content, Catal. Today 227 (2014) 57–64.10.1016/j.cattod.2013.09.034 [25] G. Almohammadi, C. O'Modhrain, S. Kelly, J.A. Sullivan, Ti-doped SBA-15 catalysts used in phenol oxidation reactions, ACS Omega 5 (1) (2019) 791–798.https://pubmed.ncbi.nlm.nih.gov/31956830/ [26] S. Matsuda, A. Kato, Titanium oxide based catalysts - a review, Appl. Catal. 8 (2) (1983) 149–165.10.1016/0166-9834(83)80076-1 [27] S.L. Suib, J. Přech, J. Čejka, Y. Kuwahara, K. Mori, H. Yamashita, Some novel porous materials for selective catalytic oxidations, Mater. Today 32 (2020) 244–259.10.1016/j.mattod.2019.06.008 [28] N. Maksimchuk, J. Lee, A. Ayupov, J.S. Chang, O. Kholdeeva, Cyclohexene oxidation with H2O2 over metal-organic framework MIL-125(Ti): The effect of protons on reactivity, Catalysts 9 (4) (2019) 324.https://doi.org/10.3390/catal9040324 [29] D.H. Lee, H.S. Kim, Catalytic cyclohexene oxidation in the nano channels of a copper silicate material, Appl. Catal. A Gen. 574 (2019) 71–78.10.1016/j.apcata.2019.01.019 [30] Y. Chen, X.P. Wang, L.J. Zhang, Synthesis and catalytic activity of hierarchical NbS-1 zeolites for cyclohexene oxidation, Microporous Mesoporous Mater. 295 (2020) 109963.10.1016/j.micromeso.2019.109963 [31] W.C. Sun, X. Zhang, Y.M. Hou, Y.J. Wang, X.M. Wang, W. Xue, Polystyrene-based hierarchically macro–mesoporous solid acid: A robust and highly efficient catalyst for indirect hydration of cyclohexene to cyclohexanol by a one-pot method under mild conditions, Ind. Eng. Chem. Res. 59 (14) (2020) 6435–6444.https://doi.org/10.1021/acs.iecr.9b05973 [32] L.V. Furda, I.G. Ryl’tsova, O.E. Lebedeva, Catalytic degradation of polyethylene in the presence of synthetic aluminosilicates, Russ. J. Appl. Chem. 81 (9) (2008) 1630–1633.https://doi.org/10.1134/s1070427208090292 [33] F. Akti, The effect of potassium modification on structural properties and catalytic activity of copper and iron containing SBA-16 catalysts for selective oxidation of ethanol, Mater. Chem. Phys. 227 (2019) 21–28.10.1016/j.matchemphys.2019.01.054 [34] B.S. Rana, B. Singh, R. Kumar, D. Verma, M.K. Bhunia, A. Bhaumik, A.K. Sinha, Hierarchical mesoporous Fe/ZSM-5 with tunable porosity for selective hydroxylation of benzene to phenol, J. Mater. Chem. 20 (39) (2010) 8575.https://doi.org/10.1039/c0jm01586e [35] S. Aslam, F. Subhan, Z.F. Yan, P. Peng, K. Qiao, W. Xing, P. Bai, R. Ullah, U.J. Etim, J.B. Zeng, M. Ikram, Facile fabrication of Ni-based KIT-6 for adsorptive desulfurization, Chem. Eng. J. 302 (2016) 239–248.10.1016/j.cej.2016.05.041 [36] Kumar A, Srinivas D, Ratnasamy P, Synthesis of framework Ti-substituted, 3-D hexagonal, mesoporous Ti-SBA-12 for selective catalytic oxidation, Chem. Commun. (Camb) (42) (2009) 6484–6486.https://pubmed.ncbi.nlm.nih.gov/19841817/ [37] I. Grohmann, W. Pilz, G. Walther, H. Kosslick, V.A. Tuan, XPS-investigation of titanium modified MFI-type zeolites, Surf. Interface Anal. 22 (1–12) (1994) 403–406.https://doi.org/10.1002/sia.740220187 [38] T. Blasco, M.A. Camblor, J.L.G. Fierro, J. Pérez-Pariente, X-ray photoelectron spectroscopy of Ti-beta zeolite, Microporous Mater. 3 (3) (1994) 259–263.10.1016/0927-6513(94)00039-5 [39] A. Moya, M. Barawi, B. Alemán, P. Zeller, M. Amati, A. Monreal-Bernal, L. Gregoratti, V.A. de la Peña O’Shea, J.J. Vilatela, Interfacial studies in CNT fibre/TiO2 photoelectrodes for efficient H2 production, Appl. Catal. B Environ. 268 (2020) 118613.10.1016/j.apcatb.2020.118613 [40] Y.X. Song, F. Xin, L.X. Zhang, Y. Wang, Oxidation of cyclohexene in the presence of transition-metal-substituted phosphotungstates and hydrogen peroxide: Catalysis and reaction pathways, ChemCatChem 9 (21) (2017) 4139–4147. |