[1] S. Rasi, J. Läntelä, J. Rintala, Upgrading landfill gas using a high pressure water absorption process, Fuel 115 (2014) 539–543.http://dx.doi.org/10.1016/j.fuel.2013.07.082 [2] L. Lombardi, E.A. Carnevale, Analysis of an innovative process for landfill gas quality improvement, Energy 109 (2016) 1107–1117.http://dx.doi.org/10.1016/j.energy.2016.05.071 [3] U. Lee, J. Han, M. Wang, Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways, J. Clean. Prod. 166 (2017) 335–342.http://dx.doi.org/10.1016/j.jclepro.2017.08.016 [4] R. Bove, P. Lunghi, Electric power generation from landfill gas using traditional and innovative technologies, Energy Convers. Manag. 47 (11–12) (2006) 1391–1401.http://dx.doi.org/10.1016/j.enconman.2005.08.017 [5] D. Gewald, K. Siokos, S. Karellas, H. Spliethoff, Waste heat recovery from a landfill gas-fired power plant, Renew. Sustain. Energy Rev. 16 (4) (2012) 1779–1789.http://dx.doi.org/10.1016/j.rser.2012.01.036 [6] K.M. Winslow, S.J. Laux, T.G. Townsend, An economic and environmental assessment on landfill gas to vehicle fuel conversion for waste hauling operations, Resour. Conserv. Recycl. 142 (2019) 155–166.http://dx.doi.org/10.1016/j.resconrec.2018.11.021 [7] National Technique and Quality Control Bureau of China, Standard of Compressed Natural Gas as Vehicle Fuel, GB18047-2000, 2000. [8] H.J. Gong, Z.Z. Chen, M.Q. Wang, W.L. Wu, W.X. Wang, A study on the feasibility of the catalytic methane oxidation for landfill gas deoxygen treatment, Fuel 120 (2014) 179–185.http://dx.doi.org/10.1016/j.fuel.2013.12.002 [9] Z.Z. Chen, H.J. Gong, Y.C. Bao, W.L. Wu, Engineering operation performance of catalytic deoxygenation equipment for landfill gas upgrading, Energy Fuels 31 (4) (2017) 4565–4570.http://dx.doi.org/10.1021/acs.energyfuels.7b00421 [10] H.J. Gong, Z.Z. Chen, M.Q. Zhang, W.L. Wu, W.X. Wang, W.B. Wang, Study on the deactivation of the deoxygen catalyst during the landfill gas upgrading process, Fuel 144 (2015) 43–49.http://dx.doi.org/10.1016/j.fuel.2014.12.019 [11] J.H. Jin, C. Li, C.W. Tsang, B. Xu, C.H. Liang, Catalytic combustion of methane over Pt-Ce oxides under scarce oxygen condition, Ind. Eng. Chem. Res. 55 (8) (2016) 2293–2301.http://dx.doi.org/10.1021/acs.iecr.5b04202 [12] F. Ortloff, J. Bohnau, U. Kramar, F. Graf, T. Kolb, Studies on the influence of H2S and SO2 on the activity of a PdO/Al2O3 catalyst for removal of oxygen by total oxidation of (bio-) methane at very low O2: CH4 ratios, Appl. Catal. B Environ. 182 (2016) 550–561.http://dx.doi.org/10.1016/j.apcatb.2015.09.026 [13] J.H. Jin, C.W. Tsang, B. Xu, C.H. Liang, Solid-state method toward PdO-CeO2 coated monolith catalysts for oxygen elimination under excess methane, Catal. Lett. 144 (12) (2014) 2052–2064.http://dx.doi.org/10.1007/s10562-014-1366-6 [14] Q.F. Zhang, Y.K. Li, R.J. Chai, G.F. Zhao, Y. Liu, Y. Lu, Low-temperature active, oscillation-free PdNi(alloy)/Ni-foam catalyst with enhanced heat transfer for coalbed methane deoxygenation via catalytic combustion, Appl. Catal. B Environ. 187 (2016) 238–248.http://dx.doi.org/10.1016/j.apcatb.2016.01.041 [15] E. Magnone, J.R. Kim, E.J. Kim, J.H. Park, Catalytic deoxidation of landfill gas on La1-xSrxCo0.2Fe0.8O3-d (0.2×0.7) perovskite-type oxides: preliminary results from a pilot evaluation study, Fuel 183 (2016) 34–38.http://dx.doi.org/10.1016/j.fuel.2016.06.027 [16] J.R. Kim, E.J. Kim, E. Magnone, J.H. Park, Catalytic deoxygen reaction of landfill gas (LFG) at intermediate temperature: the case study of perovskite-type La0.1Sr0.9Co0.2Fe0.8O3-d catalysts (LSCF), J. Ind. Eng. Chem. 47 (2017) 214–220.http://dx.doi.org/10.1016/j.jiec.2016.11.034 [17] E. Magnone, Y.G. Park, J.W. Chae, M.K. Kim, H.J. Lee, J.H. Park, High-performance low-temperature catalytic deoxidation of landfill gas based on Pd-decorated La0.8Sr0.2Co0.2Fe0.8O3-δ oxide, Chem. Eng. Sci. 212 (2020) 115352.http://dx.doi.org/10.1016/j.ces.2019.115352 [18] M.M.V.M. Souza, D.A.G. Aranda, M. Schmal, Coke formation on Pt/ZrO2/Al2O3 catalysts during CH4 reforming with CO2, Ind. Eng. Chem. Res. 41 (18) (2002) 4681–4685. 10.1021/ie010970a [19] J.F. Yu, R. Wang, S.Y. Ren, X.Y. Sun, C.L. Chen, Q.J. Ge, W. Fang, J. Zhang, H.Y. Xu, D.S. Su, The unique role of CaO in stabilizing the Pt/Al2O3Catalyst for the dehydrogenation of cyclohexane, ChemCatChem 4 (9) (2012) 1376–1381. 10.1002/cctc.201200067 [20] W.J. Qi, J.Y. Ran, R.R. Wang, X.S. Du, J. Shi, J.T. Niu, P. Zhang, M.C. Ran, Kinetic consequences of methane combustion on Pd, Pt and Pd–Pt catalysts, RSC Adv. 6 (111) (2016) 109834–109845. 10.1039/c6ra21150j [21] Y.L. Guo, M.C. Wen, G.Y. Li, T.C. An, Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review, Appl. Catal. B Environ. 281 (2021) 119447.http://dx.doi.org/10.1016/j.apcatb.2020.119447 [22] Q.T. Trinh, A.V. Nguyen, D.C. Huynh, T.H. Pham, S.H. Mushrif, Mechanistic insights into the catalytic elimination of tar and the promotional effect of boron on it: first-principles study using toluene as a model compound, Catal. Sci. Technol. 6 (15) (2016) 5871–5883. 10.1039/c6cy00358c [23] I. Banu, C.M. Manta, G. Bercaru, G. Bozga, Combustion kinetics of cyclooctane and its binary mixture with o-xylene over a Pt/γ-alumina catalyst, Chem. Eng. Res. Des. 102 (2015) 399–406.http://dx.doi.org/10.1016/j.cherd.2015.07.012 [24] K.Y. Koo, H.S. Roh, Y.T. Seo, D.J. Seo, W.L. Yoon, S.B. Park, Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process, Appl. Catal. A Gen. 340 (2) (2008) 183–190.http://dx.doi.org/10.1016/j.apcata.2008.02.009 [25] T. Gan, X.F. Chu, H. Qi, W.X. Zhang, Y.C. Zou, W.F. Yan, G. Liu, Pt/Al2O3 with ultralow Pt-loading catalyze toluene oxidation: promotional synergistic effect of Pt nanoparticles and Al2O3 support, Appl. Catal. B Environ. 257 (2019) 117943.http://dx.doi.org/10.1016/j.apcatb.2019.117943 [26] M.S. Zanuttini, M.A. Peralta, C.A. Querini, Deoxygenation of m-cresol: deactivation and regeneration of Pt/γ-Al2O3 catalysts, Ind. Eng. Chem. Res. 54 (18) (2015) 4929–4939. 10.1021/acs.iecr.5b00305 [27] H.J. Sedjame, C. Fontaine, G. Lafaye, J. Barbier Jr, On the promoting effect of the addition of ceria to platinum based alumina catalysts for VOCs oxidation, Appl. Catal. B Environ. 144 (2014) 233–242.http://dx.doi.org/10.1016/j.apcatb.2013.07.022 [28] I. Tankov, K. Arishtirova, J.M.C. Bueno, S. Damyanova, Surface and structural features of Pt/PrO2-Al2O3 catalysts for dry methane reforming, Appl. Catal. A Gen. 474 (2014) 135–148.http://dx.doi.org/10.1016/j.apcata.2013.08.030 [29] G. Corro, J.L.G. Fierro, O.V. C, Strong improvement on CH4 oxidation over Pt/γ-Al2O3 catalysts, Catal. Commun. 6 (4) (2005) 287–292.http://dx.doi.org/10.1016/j.catcom.2005.01.012 [30] G. Corro, C. Cano, J.L.G. Fierro, A study of Pt-Pd/γ-Al2O3 catalysts for methane oxidation resistant to deactivation by sulfur poisoning, J. Mol. Catal. A Chem. 315 (1) (2010) 35–42.http://dx.doi.org/10.1016/j.molcata.2009.08.023 [31] Y.H. Chin, C. Buda, M. Neurock, E. Iglesia, Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters, J. Am. Chem. Soc. 133 (40) (2011) 15958–15978.https://pubmed.ncbi.nlm.nih.gov/21919447/ [32] Y.H. (Cathy) Chin, C. Buda, M. Neurock, E. Iglesia, Selectivity of chemisorbed oxygen in C-H bond activation and CO oxidation and kinetic consequences for CH4-O2 catalysis on Pt and Rh clusters, J. Catal. 283 (1) (2011) 10–24.http://dx.doi.org/10.1016/j.jcat.2011.06.011 [33] Y.H.C. Chin, E. Iglesia, Elementary steps, the role of chemisorbed oxygen, and the effects of cluster size in catalytic CH4–O2 reactions on palladium, J. Phys. Chem. C 115 (36) (2011) 17845–17855. 10.1021/jp203324y [34] M.S. Zanuttini, C.D. Lago, M.S. Gross, M.A. Peralta, C.A. Querini, Hydrodeoxygenation of anisole with Pt catalysts, Ind. Eng. Chem. Res. 56 (22) (2017) 6419–6431. 10.1021/acs.iecr.7b00521 [35] D. San-José-Alonso, J. Juan-Juan, M.J. Illán-Gómez, M.C. Román-Martínez, Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane, Appl. Catal. A Gen. 371 (1–2) (2009) 54–59.http://dx.doi.org/10.1016/j.apcata.2009.09.026 [36] A. Ochoa, B. Aramburu, B. Valle, D.E. Resasco, J. Bilbao, A.G. Gayubo, P. Castaño, Role of oxygenates and effect of operating conditions in the deactivation of a Ni supported catalyst during the steam reforming of bio-oil, Green Chem. 19 (2017) 4315-4333. |