[1] S.H. Khan, Advanced approaches for heavy metals removal from industrial wastewater, in: P.S. Maulin, R.C. Susana. K. Vineet (Eds.), New Trends in Removal of Heavy Metals from Industrial Wastewater, Elsevier, Amsterdam, 2021: 403-440. [2] Q.G. Li, G.H. Liu, L. Qi, H.C. Wang, Z.F. Ye, Q.L. Zhao, Heavy metal-contained wastewater in China: Discharge, management and treatment, Sci. Total. Environ. 808 (2022) 152091. [3] X. Li, Q.Q. Yang, L. Wang, C.X. Song, L.F. Chen, J. Zhang, Y. Liang, Using Caenorhabditis elegans to assess the ecological health risks of heavy metals in soil and sediments around Dabaoshan Mine, China, Environ. Sci. Pollut. Res. 29 (11) (2022) 16332-16345. [4] X.M. Liu, Q.J. Song, Y. Tang, W.L. Li, J.M. Xu, J.J. Wu, F. Wang, P.C. Brookes, Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis, Sci. Total. Environ. 463-464 (2013) 530-540. [5] S.S. Yang, W.Z. Feng, S.Q. Wang, L. Chen, X. Zheng, X.F. Li, D.M. Zhou, Farmland heavy metals can migrate to deep soil at a regional scale: A case study on a wastewater-irrigated area in China, Environ. Pollut. 281 (2021) 116977. [6] Y. Feng, Y.Q. Wang, Y.Y. Wang, S.C. Liu, J.L. Jiang, C.J. Cao, J.F. Yao, Simple fabrication of easy handling millimeter-sized porous attapulgite/polymer beads for heavy metal removal, J. Colloid Interf. Sci. 502 (2017) 52-58. [7] Y. Feng, Y.Y. Wang, Y.Q. Wang, X.F. Zhang, J.F. Yao, In-situ gelation of sodium alginate supported on melamine sponge for efficient removal of copper ions, J. Colloid Interf. Sci. 512 (2018) 7-13. [8] L.P. Wang, Y.J. Chen, Sequential precipitation of iron, copper, and zinc from wastewater for metal recovery, J. Environ. Eng. 145 (1) (2019) 04018130. [9] R.P. Wu, Removal ofheavymetalions from industrial wastewater based on chemical precipitation method, Ekoloji 28 (2019) 2443-2452. [10] V. Ajao, K. Nam, P. Chatzopoulos, E. Spruijt, H. Bruning, H. Rijnaarts, H. Temmink, Regeneration and reuse of microbial extracellular polymers immobilised on a bed column for heavy metal recovery, Water Res. 171 (2020) 115472. [11] J. Gao, Y.R. Qiu, B. Hou, Q. Zhang, X.D. Zhang, Treatment of wastewater containing nickel by complexation-ultrafiltration using sodium polyacrylate and the stability of PAA-Ni complex in the shear field, Chem. Eng. J. 334 (2018) 1878-1885. [12] Z.Y. Han, Z.H. Guo, Y. Zhang, X.Y. Xiao, Z. Xu, Y. Sun, Adsorption-pyrolysis technology for recovering heavy metals in solution using contaminated biomass phytoremediation, Resour. Conserv. Recycl. 129 (2018) 20-26. [13] M.T. Hoang, T.D. Pham, V.T. Nguyen, M.K. Nguyen, T.T. Pham, B. van der Bruggen, Removal and recovery of lead from wastewater using an integrated system of adsorption and crystallization, J. Clean. Prod. 213 (2019) 1204-1216. [14] T. Kegl, A. Košak, A. Lobnik, Z. Novak, A.K. Kralj, I. Ban, Adsorption of rare earth metals from wastewater by nanomaterials: A review, J. Hazard. Mater. 386 (2020) 121632. [15] S.Y. Bao, Y.J. Wang, Z.S. Wei, W.W. Yang, Y.S. Yu, Highly efficient recovery of heavy rare earth elements by using an amino-functionalized magnetic graphene oxide with acid and base resistance, J. Hazard. Mater. 424 (Pt A) (2022) 127370. [16] S.Y. Bao, Y.J. Wang, Z.S. Wei, W.W. Yang, Y.S. Yu, Y.Y. Sun, Amino-assisted AHMT anchored on graphene oxide as high performance adsorbent for efficient removal of Cr(VI) and Hg(II) from aqueous solutions under wide pH range, J. Hazard. Mater. 416 (2021) 125825. [17] S.Y. Bao, W.W. Yang, Y.J. Wang, Y.S. Yu, Y.Y. Sun, K.F. Li, PEI grafted amino-functionalized graphene oxide nanosheets for ultrafast and high selectivity removal of Cr(VI) from aqueous solutions by adsorption combined with reduction: Behaviors and mechanisms, Chem. Eng. J. 399 (2020) 125762. [18] M.Y. Gao, F.Y. Tian, Z. Guo, X. Zhang, Z.J. Li, J. Zhou, X. Zhou, Y.S. Yu, W.W. Yang, Mutual-modification effect in adjacent Pt nanoparticles and single atoms with sub-nanometer inter-site distances to boost photocatalytic hydrogen evolution, Chem. Eng. J. 446 (2022) 137127. [19] X. Zhang, W.W. Yang, M.Y. Gao, H. Liu, K.F. Li, Y.S. Yu, Room-temperature solid phase surface engineering of BiOI sheets stacking g-C3N4 boosts photocatalytic reduction of Cr(VI), Green Energy Environ. 7 (1) (2022) 66-74. [20] B.Z. Zou, S.J. Zhang, P. Sun, Z.F. Ye, Q.L. Zhao, W. Zhang, L.C. Zhou, Preparation of a novel poly-chloromethyl styrene chelating resin containing heterofluorenone pendant groups for the removal of Cu (II), Pb (II), and Ni (II) from wastewaters, Colloid Interf. Sci. Commun. 40 (2021) 100349. [21] F. Hussin, M.K. Aroua, M. Szlachta, Biochar derived from fruit by-products using pyrolysis process for the elimination of Pb(II) ion: An updated review, Chemosphere 287 (2022) 132250. [22] M. Imamoglu, H. Şahin, Ş. Aydın, F. Tosunoğlu, H. Yılmaz, S.Z. Yıldız, Investigation of Pb(II) adsorption on a novel activated carbon prepared from hazelnut husk by K2CO3 activation, Desalin. Water Treat. 57 (10) (2016) 4587-4596. [23] S.G. Wang, K.K. Wang, C. Dai, H.Z. Shi, J.L. Li, Adsorption of Pb2+ on amino-functionalized core-shell magnetic mesoporous SBA-15 silica composite, Chem. Eng. J. 262 (2015) 897-903. [24] Z.H. Wang, B.Y. Yue, J. Teng, F.P. Jiao, X.Y. Jiang, J.G. Yu, M. Zhong, X.Q. Chen, Tartaric acid modified graphene oxide as a novel adsorbent for high-efficiently removal of Cu(II) and Pb(II) from aqueous solutions, J. Taiwan Inst. Chem. Eng. 66 (2016) 181-190. [25] Z.L. Li, Y. Kong, Y.Y. Ge, Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution, Chem. Eng. J. 270 (2015) 229-234. [26] M.L. Rahman, Z.J. Wong, M.S. Sarjadi, C.G. Joseph, S.E. Arshad, B. Musta, M.H. Abdullah, Waste fiber-based poly(hydroxamic acid) ligand for toxic metals removal from industrial wastewater, Polymers 13 (9) (2021) 1486. [27] T. Siddharth, P. Sridhar, V. Vinila, R.D. Tyagi, Environmental applications of microbial extracellular polymeric substance (EPS): A review, J. Environ. Manage. 287 (2021) 112307. [28] A. Gupta, V. Sharma, K. Sharma, V. Kumar, S. Choudhary, P. Mankotia, B. Kumar, H. Mishra, A. Moulick, A. Ekielski, P.K. Mishra, A review of adsorbents for heavy metal decontamination: Growing approach to wastewater treatment, Materials 14 (16) (2021) 4702. [29] L.M. Yang, W.B. Hu, Z.W. Chang, T. Liu, D.F. Fang, P.H. Shao, H. Shi, X.B. Luo, Electrochemical recovery and high value-added reutilization of heavy metal ions from wastewater: Recent advances and future trends, Environ. Int. 152 (2021) 106512. [30] C.Z. Zhang, H. Sheng, Y.X. Su, J.Q. Xu, An efficient and health-friendly adsorbent N-[4-morpholinecarboximidamidoyl]carboximidamidoylmethylated polyphenylene sulfide for removing heavy metal ions from water, J. Mol. Liq. 296 (2019) 111860. [31] C.Z. Zhang, Y. Yuan, T. Li, Adsorption and desorption of heavy metals from water using aminoethyl reduced graphene oxide, Environ. Eng. Sci. 35 (9) (2018) 978-987. [32] J.J. Huang, X. Zhang, L.L. Bai, S.G. Yuan, Polyphenylene sulfide based anion exchange fiber: Synthesis, characterization and adsorption of Cr(VI), J. Environ. Sci. 24 (8) (2012) 1433-1438. [33] GB/T 2945-2017, Standard for ammonium nitrate, In: National Standard of the People's Republic of China, State General Administration of the People's Republic of China for Quality Supervision and Inspection and Quarantine, Beijing, 2017. [34] H. Li, G.Y. Lv, G. Zhang, H.H. Ren, X.X. Fan, Y.G. Yan, Synthesis and characterization of novel poly(phenylene sulfide) containing a chromophore in the main chain, Polym. Int. 63 (9) (2014) 1707-1714. [35] G.L. Shao, J.F. Xiao, Z.H. Tian, J.J. Huang, S.G. Yuan, Preparation and characterization of polyphenylene sulfide-based chelating resin-functionalized 2-amino-1,3,4-thiadiazole for selective removal Hg(II) from aqueous solutions, Polym. Adv. Technol. 29 (3) (2018) 1030-1038. [36] D.J. Zhou, L.B. Dai, H. Ni, G.L. Hui, S.G. Yuan, Preparation and characterization of polyphenylene sulfide-based chelating fibers, Chin. Chem. Lett. 25 (2) (2014) 221-225. [37] C. Pevida, T.C. Drage, C.E. Snape, Silica-templated melamine-formaldehyde resin derived adsorbents for CO2 capture, Carbon 46 (11) (2008) 1464-1474. [38] O.C.S. Al Hamouz, Synthesis and characterization of a novel series of cross-linked (phenol, formaldehyde, alkyldiamine) terpolymers for the removal of toxic metal ions from wastewater, Arab. J. Sci. Eng. 41 (1) (2016) 119-133. [39] C.Z. Zhang, Q.Q. Shen, M.X. Niu, M.R. Ni, Computational design and templated synthesis of porous polyether frameworks with N and O adsorption sites for efficiently chelating heavy metal ions, Ind. Eng. Chem. Res. 60 (45) (2021) 16267-16277. [40] Q.Y. Chen, L. Yang, L. Liu, X.X. Li, H.D. Li, Q. Zhang, D.J. Cao, XPS and NMR analyze the combined forms of Pb in Cladophora rupestris subcells and its detoxification, Environ. Sci. Pollut. Res. 29 (38) (2022) 57490-57501. [41] X.C. Yu, Q.B. Cao, H. Zou, Q.S. Peng, Activation mechanism of lead ions in the flotation of rutile using amyl xanthate as a collector, Min. Metall. Explor. 37 (1) (2020) 333-344. [42] R.Q. Fu, Y. Liu, Z.M. Lou, Z.X. Wang, S.A. Baig, X.H. Xu, Adsorptive removal of Pb(II) by magnetic activated carbon incorporated with amino groups from aqueous solutions, J. Taiwan Inst. Chem. Eng. 62 (2016) 247-258. [43] A. Denizli, B. Garipcan, A. Karabakan, H. Senöz, Synthesis and characterization of poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) copolymer beads for removal of lead ions, Mater. Sci. Eng. C 25 (4) (2005) 448-454. [44] A. Kara, L. Uzun, N. Beşirli, A. Denizli, Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) beads for heavy metal removal, J. Hazard. Mater. 106 (2-3) (2004) 93-99. [45] S.S. Kalaivani, A. Muthukrishnaraj, S. Sivanesan, L. Ravikumar, Novel hyperbranched polyurethane resins for the removal of heavy metal ions from aqueous solution, Process. Saf. Environ. Prot. 104 (2016) 11-23. [46] GB8978-1996, Integrated wastewater discharge standard, In: National Standard of the People's Republic of China, Beijing, 1996. [47] S.H. Dai, N. Wang, C.J. Qi, X.X. Wang, Y. Ma, L. Yang, X.Y. Liu, Q. Huang, C.M. Nie, B.W. Hu, X.K. Wang, Preparation of core-shell structure Fe3O4@C@MnO2 nanoparticles for efficient elimination of U(VI) and Eu(III) ions, Sci. Total. Environ. 685 (2019) 986-996. [48] H. Tang, J.Q. Wang, S. Zhang, H.W. Pang, X.X. Wang, Z.S. Chen, M. Li, G. Song, M.Q. Qiu, S.J. Yu, Recent advances in nanoscale zero-valent iron-based materials: Characteristics, environmental remediation and challenges, J. Clean. Prod. 319 (2021) 128641. [49] T.T. Zhang, J.M. Chen, H.Y. Xiong, Z.D. Yuan, Y.L. Zhu, B.W. Hu, Constructing new Fe3O4@MnOx with 3D hollow structure for efficient recovery of uranium from simulated seawater, Chemosphere 283 (2021) 131241. [50] B.W. Hu, H.F. Wang, R.R. Liu, M.Q. Qiu, Highly efficient U(VI) capture by amidoxime/carbon nitride composites: Evidence of EXAFS and modeling, Chemosphere 274 (2021) 129743. [51] L.J. Feng, The synthesis of nano-Pb(OH)2, AgCuO2 and their electrochemical performance, Ph. D. Thesis, Beijing University of Chemical Technology, China, 2008. [52] M. Salavati-Niasari, F. Tavakoli, Pb(OH)I-graphene composite: synthesis and characterization, J. Ind. Eng. Chem. 21 (2015) 1208-1213. [53] F. Tavakoli, M. Salavati-Niasari, F. Mohandes, Sonochemical synthesis and characterization of lead iodide hydroxide micro/nanostructures, Ultrason. Sonochem. 21 (1) (2014) 234-241. |