[1] J.X. Sun, X. Yu, Q.S. Xiao, J.F. Song, S.K. Sun, Utilization characteristics and sustainability evaluation of water resources in China, Water 10 (9) (2018) 1142. [2] Z.F. Zhou, J.H. Liu, N.X. Zhou, T. Zhang, H.X. Zeng, Does the “10-Point Water Plan” reduce the intensity of industrial water pollution? Quasi-experimental evidence from China, J. Environ. Manag. 295 (2021) 113048. [3] J.H. Qu, The international conference on the evolution of China urban water environment & ecology, 2019, Front. Environ. Sci. Eng. 13 (6) (2019) 1. [4] D.M. Han, M.J. Currell, G.L. Cao, Deep challenges for China's war on water pollution, Environ. Pollut. 218 (2016) 1222-1233. [5] X. Miao, Y.H. Tang, C.W.Y. Wong, H.Y. Zang, The latent causal chain of industrial water pollution in China, Environ. Pollut. 196 (2015) 473-477. [6] Y. Huang, Q. Yi, G.Q. Wei, J.X. Kang, W.Y. Li, J. Feng, K.C. Xie, Energy use, greenhouse gases emission and cost effectiveness of an integrated high-and low-temperature Fisher-Tropsch synthesis plant from a lifecycle viewpoint, Appl. Energy 228 (2018) 1009-1019. [7] Y. Man, Y.L. Han, Y.S. Hu, S. Yang, S.Y. Yang, Synthetic natural gas as an alternative to coal for power generation in China: life cycle analysis of haze pollution, greenhouse gas emission, and resource consumption, J. Clean. Prod. 172 (2018) 2503-2512. [8] L.Y. Pan, P. Liu, L.W. Ma, Z. Li, A supply chain based assessment of water issues in the coal industry in China, Energy Policy 48 (2012) 93-102. [9] D. Xiang, Y. Qian, Y. Man, S.Y. Yang, Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process, Appl. Energy 113 (2014) 639-647. [10] Y.R. Feng, H.B. Song, M. Xiao, K.Q. Lin, K. Guo, H.J. Gai, Development of Phenols Recovery process from coal gasification wastewater with mesityl oxide as a novel extractant, J. Clean. Prod. 166 (2017) 1314-1322. [11] Q.H. Ji, S. Tabassum, S. Hena, C.G. Silva, G.X. Yu, Z.J. Zhang, A review on the coal gasification wastewater treatment technologies: past, present and future outlook, J. Clean. Prod. 126 (2016) 38-55. [12] T.Z. Tong, M. Elimelech, The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions, Environ. Sci. Technol. 50 (13) (2016) 6846-6855. [13] R.H. Xiong, C. Wei, Current status and technology trends of zero liquid discharge at coal chemical industry in China, J. Water Process. Eng. 19 (2017) 346-351. [14] H.P. Ma, H.L. Wang, C.C. Tian, Y.L. Chang, W. Yuan, Y.H. Qi, Z.L. Chao, W.Y. Chen, W.J. Lv, An optimized design for zero liquid discharge from coal chemical industry: a case study in China, J. Clean. Prod. 319 (2021) 128572. [15] P.Z. Cui, Y. Qian, S.Y. Yang, New water treatment index system toward zero liquid discharge for sustainable coal chemical processes, ACS Sustainable Chem. Eng. 6 (1) (2018) 1370-1378. [16] M. Yaqub, W. Lee, Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: a review, Sci. Total Environ. 681 (2019) 551-563. [17] A. Mehmeti, J. Pedro Pérez-Trujillo, F. Elizalde-Blancas, A. Angelis-Dimakis, S.J. McPhail, Exergetic, environmental and economic sustainability assessment of stationary Molten Carbonate Fuel Cells, Energy Convers. Manag. 168 (2018) 276-287. [18] A. Haghighat Mamaghani, B. Najafi, A. Shirazi, F. Rinaldi, 4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system, Energy 82 (2015) 650-663. [19] M. Pan, J. Sikorski, J. Akroyd, S. Mosbach, R. Lau, M. Kraft, Design technologies for eco-industrial parks: from unit operations to processes, plants and industrial networks, Appl. Energy 175 (2016) 305-323. [20] X. Liu, L.G. Chen, X.Y. Qin, F.R. Sun, Exergy loss minimization for a blast furnace with comparative analyses for energy flows and exergy flows, Energy 93 (2015) 10-19. [21] W. Zhang, J.H. Zhang, Z.L. Xue, Exergy analyses of the oxygen blast furnace with top gas recycling process, Energy 121 (2017) 135-146. [22] M.X. Yu, P.Z. Cui, Y.L. Wang, Z.Q. Liu, Z.Y. Zhu, S. Yang, Advanced exergy and exergoeconomic analysis of cascade absorption refrigeration system driven by low-grade waste heat, ACS Sustainable Chem. Eng. 7 (19) (2019) 16843-16857. [23] A. Najafi, A. Jafarian, J. Darand, Thermo-economic evaluation of a hybrid solar-conventional energy supply in a zero liquid discharge wastewater treatment plant, Energy Convers. Manag. 188 (2019) 276-295. [24] A. Kaab, M. Sharifi, H. Mobli, A. Nabavi-Pelesaraei, K.W. Chau, Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production, Energy 181 (2019) 1298-1320. [25] V. Innocenzi, F. Cantarini, S. Zueva, A. Amato, B. Morico, F. Beolchini, M. Prisciandaro, F. Vegliò, Environmental and economic assessment of gasification wastewater treatment by life cycle assessment and life cycle costing approach, Resour. Conserv. Recycl. 168 (2021) 105252. [26] D.P. Meng, Y. Dai, Y. Xu, Y.M. Wu, P.Z. Cui, Z.Y. Zhu, Y.X. Ma, Y.L. Wang, Energy, economic and environmental evaluations for the separation of ethyl acetate/ethanol/water mixture via distillation and pervaporation unit, Process. Saf. Environ. Prot. 140 (2020) 14-25. [27] J.X. Shi, W.P. Huang, H.J. Han, C.Y. Xu, Review on treatment technology of salt wastewater in coal chemical industry of China, Desalination 493 (2020) 114640. [28] Y.L. Wang, X.B. Liu, H.R. Zhang, Y.G. Liu, P.Z. Cui, Z.Y. Zhu, Y.X. Ma, J. Gao, Comprehensive 3E analysis and multi-objective optimization of a novel process for CO2 capture and separation process from syngas, J. Clean. Prod. 274 (2020) 122871. [29] M.X. Yu, Z.R. Chen, D. Yao, F. Zhao, X.S. Pan, X.B. Liu, P.Z. Cui, Z.Y. Zhu, Y.L. Wang, Energy, exergy, economy analysis and multi-objective optimization of a novel cascade absorption heat transformer driven by low-level waste heat, Energy Convers. Manag. 221 (2020) 113162. [30] V. Jain, G. Sachdeva, Energy, exergy, economic (3E) analyses and multi-objective optimization of vapor absorption heat transformer using NSGA-II technique, Energy Convers. Manag. 148 (2017) 1096-1113. [31] J. Rubio, M.L. Souza, R.W. Smith, Overview of flotation as a wastewater treatment technique, Miner. Eng. 15 (3) (2002) 139-155. [32] C. Ji, T. Hong, New Internet search volume-based weighting method for integrating various environmental impacts, Environ. Impact Assess. Rev. 56 (2016) 128-138. [33] D.C. Feng, Z.J. Yu, Y. Chen, Y. Qian, Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation, Ind. Eng. Chem. Res. 48 (12) (2009) 5816-5823. [34] Q. Zhao, Y. Liu, State of the art of biological processes for coal gasification wastewater treatment, Biotechnol. Adv. 34 (5) (2016) 1064-1072. [35] R.Y. Ning, T.L. Troyer, Tandom reverse osmosis process for zero-liquid discharge, Desalination 237 (1-3) (2009) 238-242. [36] F. Knops, S. van Hoof, H. Futselaar, L. Broens, Economic evaluation of a new ultrafiltration membrane for pretreatment of seawater reverse osmosis, Desalination 203 (1-3) (2007) 300-306. [37] T. Nandy, P. Manekar, R. Dhodapkar, G. Pophali, S. Devotta, Water conservation through implementation of ultrafiltration and reverse osmosis system with recourse to recycling of effluent in textile industry-A case study, Resour. Conserv. Recycl. 51 (1) (2007) 64-77. [38] J. Senán-Salinas, R. García-Pacheco, J. Landaburu-Aguirre, E. García-Calvo, Recycling of end-of-life reverse osmosis membranes: comparative LCA and cost-effectiveness analysis at pilot scale, Resour. Conserv. Recycl. 150 (2019) 104423. [39] H. Sun, J. Yao, D. Li, Q. Li, B. Liu, S. Liu, H. Cong, S. van Agtmaal, C.H. Feng, Removal of phenols from coal gasification wastewater through polypropylene hollow fiber supported liquid membrane, Chem. Eng. Res. Des. 123 (2017) 277-283. [40] D.P. S, B. A K, A comparative study on growth and degradation behavior of C. pyrenoidosa on synthetic phenol and phenolic wastewater of a coal gasification plant, J. Environ. Chem. Eng. 7 (3) (2019) 103079. [41] H.J. Gai, Y.B. Jiang, Y. Qian, A. Kraslawski, Conceptual design and retrofitting of the coal-gasification wastewater treatment process, Chem. Eng. J. 138 (1-3) (2008) 84-94. [42] C.K. Aktan, K. Yapsakli, B. Mertoglu, Inhibitory effects of free ammonia on Anammox bacteria, Biodegradation 23 (5) (2012) 751-762. [43] W.T. Wang, J.M. Herreros, A. Tsolakis, A.P.E. York, Ammonia as hydrogen carrier for transportation; investigation of the ammonia exhaust gas fuel reforming, Int. J. Hydrog. Energy 38 (23) (2013) 9907-9917. [44] Z. Liu, B. Liu, J.Z. Guo, X. Xin, X.H. Yang, Conventional and advanced exergy analysis of a novel transcritical compressed carbon dioxide energy storage system, Energy Convers. Manag. 198 (2019) 111807. [45] S.C. Kaushik, A. Arora, Energy and exergy analysis of single effect and series flow double effect water-lithium bromide absorption refrigeration systems, Int. J. Refrig. 32 (6) (2009) 1247-1258. [46] X.B. Liu, X. Yang, M.X. Yu, W.X. Zhang, Y.L. Wang, P.Z. Cui, Z.Y. Zhu, Y.X. Ma, J. Gao, Energy, exergy, economic and environmental (4E) analysis of an integrated process combining CO2 capture and storage, an organic Rankine cycle and an absorption refrigeration cycle, Energy Convers. Manag. 210 (2020) 112738. [47] C. Baier, Chemical process design and integration, John Wiley & Sons, 2016. [48] D. Mignard, Correlating the chemical engineering plant cost index with macro-economic indicators,Chem. Eng. Res. Des.92 (2) (2014) 285-294. [49] A. Yang, S.R. Sun, A. Eslamimanesh, S.A. Wei, W.F. Shen, Energy-saving investigation for diethyl carbonate synthesis through the reactive dividing wall column combining the vapor recompression heat pump or different pressure thermally coupled technique, Energy 172 (2019) 320-332. [50] Y. Li, X.Y. Luo, X.W. Huang, D.W. Wang, W.L. Zhang, Life Cycle Assessment of a municipal wastewater treatment plant: a case study in Suzhou, China, J. Clean. Prod. 57 (2013) 221-227. [51] X.L. Su, P.C. Chiang, S.Y. Pan, G.J. Chen, Y.R. Tao, G.J. Wu, F.F. Wang, W.Z. Cao, Systematic approach to evaluating environmental and ecological technologies for wastewater treatment, Chemosphere 218 (2019) 778-792. [52] R. Hansen, T. Thogersen, F. Rogalla, Comparing cost and process performance of activated sludge (AS) and biological aerated filters (BAF) over ten years of full sale operation, Water Sci. Technol. 55 (8-9) (2007) 99-106. [53] A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes, Renew. Sustain. Energy Rev. 24 (2013) 343-356. [54] A. Subramani, J.G. Jacangelo, Treatment technologies for reverse osmosis concentrate volume minimization: a review, Sep. Purif. Technol. 122 (2014) 472-489. [55] A. Nabavi-Pelesaraei, H. Hosseinzadeh-Bandbafha, P. Qasemi-Kordkheili, H. Kouchaki-Penchah, F. Riahi-Dorcheh, Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production, Energy 103 (2016) 672-678. |