[1] J. Serna, C. Bergwitz, Importance of dietary phosphorus for bone metabolism and healthy aging, Nutrients 12 (10) (2020) 3001. [2] C.J. Vorland, E.R. Stremke, R.N. Moorthi, K.M. Hill Gallant, Effects of excessive dietary phosphorus intake on bone health, Curr. Osteopor. Rep. 15 (5) (2017) 473–482. [3] D.W. Litke, Review of phosphorus control measures in the United States and their effects on water quality, Water-Resources Investigations Report 99–4007, U.S. Geological Survey, 1999, pp. 1–38. [4] A.A. Aryee, F.M. Mpatani, X. Zhang, A.N. Kani, E. Dovi, R. Han, Z. Li, L. Qu, Iron (III) and iminodiacetic acid functionalized magnetic peanut husk for the removal of phosphate from solution: Characterization, kinetic and equilibrium studies, J. Clean. Prod. 268 (2020) 122191. [5] D.W. Schindler, S.R. Carpenter, S.C. Chapra, R.E. Hecky, D.M. Orihel, Reducing phosphorus to curb lake eutrophication is a success, Environ. Sci. Technol. 50 (17) (2016) 8923–8929. [6] J.T. Bunce, E. Ndam, I.D. Ofiteru, A. Moore, D.W. Graham, A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems, Front. Environ. Sci. 6 (2018) 8. [7] I.W. Almanassra, V. Kochkodan, G. McKay, M.A. Atieh, T. Al-Ansari, Review of phosphate removal from water by carbonaceous sorbents, J. Environ. Manage. 287 (2021) 112245. [8] I.W. Almanassra, G. McKay, V. Kochkodan, M. Ali Atieh, T. Al-Ansari, A state of the art review on phosphate removal from water by biochars, Chem. Eng. J. 409 (2021) 128211. [9] Q.Q. He, H.J. Zhao, Z.D. Teng, Y. Wang, M. Li, M.R. Hoffmann, Phosphate removal and recovery by lanthanum-based adsorbents: A review for current advances, Chemosphere 303 (Pt 1) (2022) 134987. [10] G.J. Jiao, J. Ma, Y. Li, D. Jin, Z. Ali, J. Zhou, R. Sun, Recent advances and challenges on removal and recycling of phosphate from wastewater using biomass-derived adsorbents, Chemosphere 278 (2021) 130377. [11] S. Verma, M.N. Nadagouda, Graphene-based composites for phosphate removal, ACS Omega 6 (6) (2021) 4119–4125. [12] E. Moumen, L. Bazzi, S. El Hankari, Metal–organic frameworks and their composites for the adsorption and sensing of phosphate, Coord. Chem. Rev. 455 (2022) 214376. [13] A.S. Eltaweil, E.M. Abd El-Monaem, H.M. Elshishini, H.G. El-Aqapa, M. Hosny, A.M. Abdelfatah, M.S. Ahmed, E.N. Hammad, G.M. El-Subruiti, M. Fawzy, A.M. Omer, Recent developments in alginate-based adsorbents for removing phosphate ions from wastewater: A review, RSC Adv. 12 (13) (2022) 8228–8248. [14] N.M. Mahmoodi, M. Oveisi, M. Bakhtiari, B. Hayati, A.A. Shekarchi, A. Bagheri, S. Rahimi, Environmentally friendly ultrasound-assisted synthesis of magnetic zeolitic imidazolate framework—Graphene oxide nanocomposites and pollutant removal from water, J. Mol. Liq. 282 (2019) 115–130. [15] X. Liu, Y. Shan, S. Zhang, Q. Kong, H. Pang, Application of metal organic framework in wastewater treatment, Green Energy Environ. (2022). [16] S. Li, M. Liu, C. Yin, J. Chen, X. Yang, S. Wang, Tuning the structure flexibility of metal–organic frameworks via adjusting precursor anionic species for selective removal of phosphorus, Process. Saf. Environ. Prot. 143 (2020) 322–331. [17] M.Y. Zorainy, M. Gar Alalm, S. Kaliaguine, D.C.Boffito, Revisiting the MIL-101 metal–organic framework: Design, synthesis, modifications, advances, and recent applications, J. Mater. Chem. A 9 (39) (2021) 22159–22217. [18] Q.Y. Xie, Y. Li, Z.L. Lv, H. Zhou, X.J. Yang, J. Chen, H. Guo, Effective adsorption and removal of phosphate from aqueous solutions and eutrophic water by Fe-based MOFs of MIL-101, Sci. Rep. 7 (1) (2017) 3316. [19] S. Zhuang, R. Cheng, J. Wang, Adsorption of diclofenac from aqueous solution using UiO-66-type metal–organic frameworks, Chem. Eng. J. 359 (2019) 354–362. [20] Y.F. Zhao, D.F. Wang, W. Wei, L.Z. Cui, C.W. Cho, G.P. Wu, Effective adsorption of mercury by Zr(IV)-based metal–organic frameworks of UiO-66-NH2 from aqueous solution, Environ. Sci. Pollut. Res. 28 (6) (2021) 7068–7075. [21] A. Yadav, N. Bagotia, A.K. Sharma, S. Kumar, Advances in decontamination of wastewater using biomass-basedcomposites: A critical review, Sci. Total Environ. 784 (2021) 147108. [22] K.T. Maru, S. Kalla, R. Jangir, Dye contaminated wastewater treatment through metal–organic framework (MOF) based materials, New J. Chem. 46 (7) (2022) 3054–3072. [23] Y. Zhao, J.F. Shi, X.Y. Wang, W.R. Li, Y.Z. Wu, Z.Y.Jiang, Biomass@MOF-derived carbon aerogels with a hierarchically structured surface for treating organic pollutants, Ind. Eng. Chem. Res. 59 (39) (2020) 17529–17536. [24] J. Liu, Y.J. Li, Z.C. Lou, Recent advancements in MOF/biomass and bio-MOF multifunctional materials: A review, Sustainability 14 (10) (2022) 5768. [25] A.A. Aryee, F.M. Mpatani, A.N. Kani, E. Dovi, R. Han, Z. Li, L. Qu, A review on functionalized adsorbents based on peanut husk for the sequestration of pollutants in wastewater: Modification methods and adsorption study, J. Clean. Prod. 310 (2021) 127502. [26] H.S. Zhang, X. Hu, T.X. Li, Y.X. Zhang, H.X. Xu, Y.Y. Sun, X.Y. Gu, C. Gu, J. Luo, B. Gao, MIL series of metal organic frameworks (MOFs) as novel adsorbents for heavy metals in water: A review, J. Hazard. Mater. 429 (2022) 128271. [27] A.A. Aryee, E. Dovi, Q.Y. Li, R.P. Han, Z.H. Li, L.B. Qu, Magnetic biocomposite based on peanut husk for adsorption of hexavalent chromium, Congo red and phosphate from solution: Characterization, kinetics, equilibrium, mechanism and antibacterial studies, Chemosphere 287 (Pt 1) (2022) 132030. [28] R.P. Han, L.J. Zhang, C. Song, M.M. Zhang, H.M. Zhu, L.J. Zhang, Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode, Carbohydr. Polym. 79 (4) (2010) 1140–1149. [29] Y.F. Gu, M.M. Yang, W.L. Wang, R.P. Han, Phosphate adsorption from solution by zirconium-loaded carbon nanotubes in batch mode, J. Chem. Eng. Data 64 (6) (2019) 2849–2858. [30] A. Albert Aryee, E. Dovi, X.X. Shi, R.P. Han, Z.H. Li, L.B. Qu, Zirconium and iminodiacetic acid modified magnetic peanut husk as a novel adsorbent for the sequestration of phosphates from solution: Characterization, equilibrium and kinetic study, Colloids Surf. A 615 (2021) 126260. [31] Y. Chen, J. Tang, S. Wang, L. Zhang, W. Sun, Bimetallic coordination polymer for highly selective removal of Pb(II): Activation energy, isosteric heat of adsorption and adsorption mechanism, Chem. Eng. J. 425 (2021) 131474. [32] Z. Ajmal, A. Muhmood, M. Usman, S. Kizito, J.X. Lu, R.J. Dong, S.B. Wu, Phosphate removal from aqueous solution using iron oxides: Adsorption, desorption and regeneration characteristics, J. Colloid Interface Sci. 528 (2018) 145–155. [33] S.Y. Lee, J.W. Choi, K.G. Song, K. Choi, Y.J. Lee, K.W. Jung, Adsorption and mechanistic study for phosphate removal by rice husk-derived biochar functionalized with Mg/Al-calcined layered double hydroxides via co-pyrolysis, Compos. B Eng. 176 (2019) 107209. [34] F.P. Hu, M. Wang, X.M. Peng, F.X. Qiu, T. Zhang, H.L. Dai, Z.M. Liu, Z.Cao, High-efficient adsorption of phosphates from water by hierarchical CuAl/biomass carbon fiber layered double hydroxide, Colloids Surf. A 555 (2018) 314–323. [35] Z. Lan, Y. Lin, C. Yang, Lanthanum-iron incorporated chitosan beads for adsorption of phosphate and cadmium from aqueous solutions, Chem. Eng. J. 448 (2022) 137519. [36] X.T. Zhang, C.H. Ma, K. Wen, R.P. Han, Adsorption of phosphate from aqueous solution by lanthanum modified macroporous chelating resin, Korean J. Chem. Eng. 37 (5) (2020) 766–775. [37] M.A. Al-Ghouti, D.A. Da'ana, Guidelines for the use and interpretation of adsorption isotherm models: A review, J. Hazard. Mater. 393 (2020) 122383. [38] P.S. Kumar, L. Korving, M.C.M. van Loosdrecht, G.J.Witkamp, Adsorption as a technology to achieve ultra-low concentrations of phosphate: Research gaps and economic analysis, Water Res. X 4 (2019) 100029. [39] H. Liu, W.L. Guo, Z.H. Liu, X.H. Li, R.Q. Wang, Effective adsorption of phosphate from aqueous solution by La-based metal–organic frameworks, RSC Adv. 6 (107) (2016) 105282–105287. [40] J. Wang, Y. Xia, Fe-substituted isoreticular metal–organic framework for efficient and rapid removal of phosphate, ACS Appl. Nano Mater. 2 (10) (2019) 6492–6502. [41] M. Nehra, N. Dilbaghi, N.K. Singhal, A.A. Hassan, K.H. Kim, S. Kumar, Metal organic frameworks MIL-100(Fe) as an efficient adsorptive material for phosphate management, Environ. Res. 169 (2019) 229–236. [42] T. Boontongto, R. Burakham, Evaluation of metal–organic framework NH2-MIL-101(Fe) as an efficient sorbent for dispersive micro-solid phase extraction of phenolic pollutants in environmental water samples, Heliyon 5 (11) (2019) e02848. [43] N.M. Mahmoodi, Surface modification of magnetic nanoparticle and dye removal from ternary systems, J. Ind. Eng. Chem. 27 (2015) 251–259. [44] M. Kumar, A. Puri, A review of permissible limits of drinking water, Indian J. Occup. Environ. Med. 16 (1) (2012) 40–44. [45] L. Lv, N. Chen, C.P. Feng, J. Zhang, M. Li, Heavy metal ions removal from aqueous solution by xanthate-modified cross-linked magnetic chitosan/poly(vinyl alcohol) particles, RSC Adv. 7 (45) (2017) 27992–28000. [46] H. Hao, Y. Wang, B. Shi, NaLa(CO3)2 hybridized with Fe3O4 for efficient phosphate removal: Synthesis and adsorption mechanistic study, Water Res. 155 (2019) 1–11. [47] Z.X. Zhong, X.J. Lu, R. Yan, S. Lin, X.H. Wu, M.J. Huang, Z.Q. Liu, F.G. Zhang, B.P. Zhang, H.P. Zhu, X. Guo, Phosphate sequestration by magnetic La-impregnated bentonite granules: A combined experimental and DFT study, Sci. Total Environ. 738 (2020) 139636. |