[1] W. Ehrfeld, V. Hessel, H. Lowe, Microreactors: New Technology for Modern Chemistry, WILEY-VCH, Weinheim, (2000) 33–36. [2] M.H. Dang, J. Yue, G.W. Chen, Numerical simulation of Taylor bubble formation in a microchannel with a converging shape mixing junction, Chem. Eng. J. 262 (2015) 616–627. [3] P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up, Lab Chip 6 (3) (2006) 437–446. [4] Y.F. Zhou, C.Q. Yao, P. Zhang, X.L. Zhang, H. Lü, Y.C. Zhao, Dynamic coupling of mass transfer and chemical reaction for Taylor flow along a serpentine microchannel, Ind. Eng. Chem. Res. 59 (2020) 9279–9292. [5] M.N. Kashid, A. Renken, L. Kiwi-Minsker, Gas–liquid and liquid–liquid mass transfer in microstructured reactors, Chem. Eng. Sci. 66 (17) (2011) 3876–3897. [6] N. Shao, A. Gavriilidis, P. Angeli, Flow regimes for adiabatic gas–liquid flow in microchannels, Chem. Eng. Sci. 64 (11) (2009) 2749–2761. [7] P. Sobieszuk, R. Pohorecki, P. Cyganski, J. Grzelka, Determination of the interfacial area and mass transfer coefficients in the Taylor gas–liquid flow in a microchannel, Chem. Eng. Sci. 66 (23) (2011) 6048–6056. [8] J. Tan, Y.C. Lu, J.H. Xu, G.S. Luo, Mass transfer performance of gas–liquid segmented flow in microchannels, Chem. Eng. J. 181-182 (2012) 229–235. [9] J. Yue, G.W. Chen, Q. Yuan, L.A. Luo, Y. Gonthier, Hydrodynamics and mass transfer characteristics in gas–liquid flow through a rectangular microchannel, Chem. Eng. Sci. 62 (7) (2007) 2096–2108. [10] C.Q. Yao, Z.Y. Dong, Y.C. Zhao, G.W. Chen, Gas–liquid flow and mass transfer in a microchannel under elevated pressures, Chem. Eng. Sci. 123 (2015) 137–145. [11] M. Sattari-Najafabadi, M. Esfahany, Z. Wu, B. Sundén, Mass transfer between phases in microchannels: A review, Chem. Eng. Process. 127 (2018) 213–237. [12] P. Sobieszuk, J. Aubin, R. Pohorecki, Hydrodynamics and mass transfer in gas–liquid flows in microreactors, Chem. Eng. Technol. 35 (8) (2012) 1346–1358. [13] C.Q. Yao, Z.Y. Dong, Y.C. Zhang, Y. Mi, Y.C. Zhao, G.W. Chen, On the leakage flow around gas bubbles in slug flow in a microchannel, AIChE J. 61 (11) (2015) 3964–3972. [14] V. Srinivasan, S. Khandekar, Thermo-hydrodynamic transport phenomena in partially wetting liquid plugs moving inside micro-channels, Sādhanā 42 (4) (2017) 607–624. [15] V. Srinivasan, A.M. Rahatgaonkar, S. Khandekar, Hydrodynamics of a completely wetting isolated liquid plug oscillating inside a square capillary tube, Int. J. Multiph. Flow 135 (2021) 103534. [16] A.M. Barajas, R.L. Panton, The effects of contact angle on two-phase flow in capillary tubes, Int. J. Multiph. Flow 19 (2) (1993) 337–346. [17] T. Cubaud, U. Ulmanella, C.M. Ho, Two-phase flow in microchannels with surface modifications, Fluid Dyn. Res. 38 (11) (2006) 772–786. [18] R.M. Santos, M. Kawaji, Developments on wetting effects in microfluidic slug flow, Chem. Eng. Commun. 199 (12) (2012) 1626–1641. [19] Y.F. Wang, Q.Q. Wang, D.S. Ji, S.F. Li, N. Jin, Y.C. Zhao, Effects of the wall wettability of microchannel on the gas–liquid two-phase flow hydrodynamics, CIESC J. 73 (4) (2022) 1501-1514 (in Chinese). [20] Y. Wielhorski, M.A. Ben Abdelwahed, L. Bizet, J. Bréard, Wetting effect on bubble shapes formed in a cylindrical T-junction, Chem. Eng. Sci. 84 (2012) 100–106. [21] Y.L. Zhou, H. Chang, T. Qi, Gas–liquid two-phase flow in serpentine microchannel with different wall wettability, Chin. J. Chem. Eng. 25 (7) (2017) 874–881. [22] D. Qian, A. Lawal, Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel, Chem. Eng. Sci. 61 (23) (2006) 7609–7625. [23] G. Berčič, A. Pintar, The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries, Chem. Eng. Sci. 52 (21–22) (1997) 3709–3719. [24] J.M. Van Baten, R. Krishna, CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries, Chem. Eng. Sci. 59 (12) (2004) 2535–2545. [25] C.O. Vandu, H. Liu, R. Krishna, Mass transfer from Taylor bubbles rising in single capillaries, Chem. Eng. Sci. 60 (22) (2005) 6430–6437. [26] M. Abolhasani, M. Singh, E. Kumacheva, A. Günther, Automated microfluidic platform for studies of carbon dioxide dissolution and solubility in physical solvents, Lab Chip 12 (9) (2012) 1611–1618. [27] C.Q. Yao, Z.Y. Dong, Y.C. Zhao, G.W. Chen, An online method to measure mass transfer of slug flow in a microchannel, Chem. Eng. Sci. 112 (2014) 15–24. [28] P. Zhang, C.Q. Yao, H.Y. Ma, N. Jin, X.L. Zhang, H.Y. Lü, Y.C. Zhao, Dynamic changes in gas–liquid mass transfer during Taylor flow in long serpentine square microchannels, Chem. Eng. Sci. 182 (2018) 17–27. [29] Z.F. Pang, C.Y. Zhu, Y.G. Ma, T.T. Fu, CO2 absorption by liquid films under Taylor flow in serpentine minichannels, Ind. Eng. Chem. Res. 59 (2020) 12250-12261. [30] T. Deleau, M.H.H. Fechter, J-J. Letourneau, S. Camy, J. Aubin, A.S. Braeuer, F. Espitalier, Determination of mass transfer coefficients in high-pressure two-phase flows in capillaries using Raman spectroscopy, Chem. Eng. Sci. 228 (2020) 115960. [31] T. Deleau, J.J. Letourneau, S. Camy, J. Aubin, F. Espitalier, Determination of mass transfer coefficients in high-pressure CO2–H2O flows in microcapillaries using a colorimetric method, Chem. Eng. Sci. 248 (2022) 117161. [32] M. Mei, G. Hébrard, N. Dietrich, K. Loubière, Gas–liquid mass transfer around Taylor bubbles flowing in a long, in-plane, spiral-shaped milli-reactor, Chem. Eng. Sci. 222 (2020) 115717. [33] M. Mei, C.L. Men, K. Loubière, G. Hébrard, N. Dietrich, Taylor bubble formation and flowing in a straight millimetric channel with a cross-junction inlet geometry Part II: Gas–liquid mass transfer, Chem. Eng. Sci. 258 (2022) 117752. [34] G.F. Versteeg, W.P.M. van Swaaij, Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions, J. Chem. Eng. Data 33 (1) (1988) 29-34. [35] P. Aussillous, D. Quéré, Quick deposition of a fluid on the wall of a tube, Phys. Fluids 12 (10) (2000) 2367–2371. [36] Y.G. Ma, T.T. Fu, C.Y. Zhu, Formation mechanism and size prediction of bubble in opposite-flowing T-shaped microchannel, Trans. Tianjin Univ. 16 (4) (2010) 251–255. [37] M.J. Fuerstman, A. Lai, M.E. Thurlow, S.S. Shevkoplyas, H.A. Stone, G.M. Whitesides, The pressure drop along rectangular microchannels containing bubbles, Lab Chip 7 (11) (2007) 1479–1489. [38] C.Q. Yao, Y.Y. Liu, C. Xu, S.N. Zhao, G.W. Chen. Formation of liquid–liquid slug flow in a microfluidic T-junction: Effects of fluid properties and leakage flow, AIChE J. 64 (1) (2018) 346-357. [39] C.Q. Yao, H.Y. Ma, Q.K. Zhao, Y.Y. Liu, Y.C. Zhao, G.W. Chen, Mass transfer in liquid-liquid Taylor flow in a microchannel: Local concentration distribution, mass transfer regime and the effect of fluid viscosity, Chem. Eng. Sci. 223 (2020) 115734. [40] Y.Y. Liu, C.Q. Yao, G.W. Chen, Gas–liquid–liquid slug flow and mass transfer in hydrophilic and hydrophobic microreactors, Chin. J. Chem. Eng. 50 (2022) 85–94. |