[1] K Nagai. New developments in the production of methyl methacrylate, Appl. Catal. A Gen. 221 (1–2) (2001) 367–377. [2] S. Yamamatsu, T. Yamaguchi, K. Yokota, O. Nagano, M. Chono, A. Aoshima, Development of catalyst technology for producing methyl methacrylate (MMA) by direct methyl esterification, Catal. Surv. From Asia 14 (3–4) (2010) 124–131. [3] S. Murahashi, T. Naota, K. Ito, Y. Maeda, H.Taki, Ruthenium-catalyzed oxidative transformation of alcohols and aldehydes to esters and lactones, J. Org. Chem. 52 (19) (1987) 4319–4327. [4] R. Gopinath, B. Barkakaty, B. Talukdar, B.K.Patel, Peroxovanadium-catalyzed oxidative esterification of aldehydes, J. Org. Chem. 68 (7) (2003) 2944–2947. [5] A. Hashmi, C. Lothschütz, M. Ackermann, R. Doepp, S. Anantharaman, B. Marchetti, H. Bertagnolli, F. Rominger, Gold catalysis: in situ EXAFS study of homogeneous oxidative esterification, Chem. A Eur. J. 16 (27) (2010) 8012–8019. [6] C. Liu, S. Tang, L.W. Zheng, D. Liu, H. Zhang, A.W. Lei, Covalently bound benzyl ligand promotes selective palladium-catalyzed oxidative esterification of aldehydes with alcohols, Angewandte Chemie 124 (23) (2012) 5760–5764. [7] K. Ekoue-Kovi, C. Wolf, One-pot oxidative esterification and amidation of aldehydes, Chem. A Eur. J. 14 (31) (2008) 9463. [8] C. McDonald, H. Holcomb, K. Kennedy, E. Kirkpatrick, T. Leathers, P.Vanemon, The N-iodosuccinimide-mediated conversion of aldehydes to methyl esters, J. Org. Chem. 54 (5) (1989) 1213–1215. [9] C. Pirez, J.M. Caderon, J.P. Dacquin, A.F. Lee, K.Wilson, Tunable KIT-6 mesoporous sulfonic acid catalysts for fatty acid esterification, ACS Catal. 2 (8) (2012) 1607–1614. [10] M. Haruta, T. Kobayashi, H. Sano, N.Yamada, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ℃, Chem. Lett. 16 (2) (1987) 405–408. [11] Y.Y. Diao, R.Y. Yan, S.J. Zhang, P. Yang, Z.X. Li, L. Wang, H.F.Dong, Effects of Pb and Mg doping in Al2O3-supported Pd catalyst on direct oxidative esterification of aldehydes with alcohols to esters, J. Mol. Catal. A Chem. 303 (1–2) (2009) 35–42. [12] Y.Y. Diao, H.Y. He, P. Yang, L. Wang, S.J.Zhang, Optimizing the structure of supported Pd catalyst for direct oxidative esterification of methacrolein with methanol, Chem. Eng. Sci. 135 (2015) 128–136. [13] H.X. Liu, Q.Y. Qin, J. Zhu, J. Ma, B.H.Wang, Crystal facet structure dependence and promising Pd-based catalytic materials for resistance toward deactivation and catalytic performance in direct oxidative esterification, ACS Appl. Mater. Interfaces 14 (7) (2022) 9763–9780. [14] X.Y. Wan, W.P. Deng, Q.H. Zhang, Y. Wang, Magnesia-supported gold nanoparticles as efficient catalysts for oxidative esterification of aldehydes or alcohols with methanol to methyl esters, Catal. Today 233 (2014) 147–154. [15] B. Zugic, S. Karakalos, K.J. Stowers, M.M. Biener, J. Biener, R.J. Madix, C.M.Friend, Continuous catalytic production of methyl acrylates from unsaturated alcohols by gold: the strong effect of C═C unsaturation on reaction selectivity, ACS Catal. 6 (3) (2016) 1833–1839. [16] Y.C. Li, L. Wang, R.Y. Yan, J.X. Han, S.J.Zhang, Promoting effects of MgO, (NH4)2SO4 or MoO3 modification in oxidative esterification of methacrolein over Au/Ce0.6Zr0.4O2-based catalysts, Catal. Sci. Technol. 6 (14) (2016) 5453–5463. [17] J. Gao, G.L. Fan, L. Yang, X.Z. Cao, P. Zhang, F. Li, Oxidative esterification of methacrolein to methyl methacrylate over gold nanoparticles on hydroxyapatite, ChemCatChem 9 (7) (2017) 1230–1241. [18] Y.C. Li, Y.X. Zheng, L. Wang, Z.J. Fu, Oxidative esterification of methacrolein to methyl methacrylate over supported gold catalysts prepared by colloid deposition, ChemCatChem 9 (11) (2017) 1960–1968. [19] B. Paul, R. Khatun, S.K. Sharma, S. Adak, G. Singh, D. Das, N. Siddiqui, S. Bhandari, V. Joshi, T. Sasaki, R.Bal, Fabrication of Au nanoparticles supported on one-dimensional La2O3 nanorods for selective esterification of methacrolein to methyl methacrylate with molecular oxygen, ACS Sustainable Chem. Eng. 7 (4) (2019) 3982–3994. [20] Y. Tian, Y.C. Li, C.C. Zuo, D.F. Yin, L. Wang, Y.X. Zheng, H.F. Huang, Z.J. Fu, M. Wang, Ionic-liquid-modified porous Au/CeMnOx nanorods for methyl methacrylate (MMA) synthesis via direct oxidative esterification, ChemNanoMat 5 (11) (2019) 1361–1366. [21] Y.C. Li, Y. Tian, Y.X. Zheng, T.T. Ge, Z.J. Fu, T.T. Jiao, M. Wang, H.F. Huang, C.C. Zuo, Direct oxidation esterification of methacrolein with methanol: oxygen vacancy promotion of Zr-doped Au/CeO2 nanorods, Can. J. Chem. Eng. 98 (3) (2020) 767–774. [22] C.C. Zuo, Y. Tian, Y.X. Zheng, L. Wang, Z.J. Fu, T.T. Jiao, M. Wang, H.F. Huang, Y.C.Li, One step oxidative esterification of methacrolein with methanol over Au-CeO2/γ-Al2O3 catalysts, Catal. Commun. 124 (2019) 51–55. [23] K. Suzuki, T. Yamaguchi, K. Matsushita, C. Iitsuka, J. Miura, T. Akaogi, H.Ishida, Aerobic oxidative esterification of aldehydes with alcohols by gold-nickel oxide nanoparticle catalysts with a core-shell structure, ACS Catal. 3 (8) (2013) 1845–1849. [24] J.X. Han, S.J. Zhang, J. Zhang, R.Y.Yan, Modified extra-large mesoporous silica supported Au-Ni as a highly efficient catalyst for oxidative coupling of aldehydes with methanol, RSC Adv. 4 (102) (2014) 58769–58772. [25] Z.F. Yuan, Z.K. Gao, B.Q. Xu, Acid-base property of the supporting material controls the selectivity of Au catalyst for glycerol oxidation in base-free water, Chin. J. Catal. 36 (9) (2015) 1543–1551. [26] A. Villa, A. Gaiassi, I. Rossetti, C.L. Bianchi, K. van Benthem, G.M. Veith, L.Prati, Au on MgAl2O4 spinels: the effect of support surface properties in glycerol oxidation, J. Catal. 275 (1) (2010) 108–116. [27] T.P. Maniecki, K. Bawolak-Olczak, P. Mierczyński, W. Maniukiewicz, W.K.Jóźwiak, Effect of the chemical composition of (MgO)x(Al2O3)y support on the catalytic performance of Ni and Ni-Au catalysts for the partial oxidation of methane, Chem. Eng. J. 154 (1–3) (2009) 142–148. [28] P.R. Murthy, J.C. Zhang, W.Z.Li, Anti-sintering Au nanoparticles stabilized by a Fe-incorporated MgAl2O4 spinel for CO oxidation, Catal. Sci. Technol. 11 (5) (2021) 1854–1861. [29] X. Sun, F.F. Li, J.J. Shi, Y.H. Zheng, H.J. Su, L.B. Sun, S. Peng, C.X.Qi, Gold nanoparticles supported on MgOx-Al2O3 composite oxide: an efficient catalyst for selective hydrogenation of acetylene, Appl. Surf. Sci. 487 (2019) 625–633. [30] V.Díez, Effect of the chemical composition on the catalytic performance of MgyAlOx catalysts for alcohol elimination reactions, J. Catal. 215 (2) (2003) 220–233. [31] M. Sankar, Q. He, R.V. Engel, M.A. Sainna, A.J. Logsdail, A. Roldan, D.J. Willock, N. Agarwal, C.J. Kiely, G.J. Hutchings, Role of the support in gold-containing nanoparticles as heterogeneous catalysts, Chem. Rev. 120 (8) (2020) 3890–3938. [32] R.Zanella, Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea, J. Catal. 222 (2) (2004) 357–367. [33] Rodolfo, Zanella, Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea, Appl. Catal. A Gen. 291 (1–2) (2005) 62–72. [34] H. Yazid, R. Adnan, S.A. Hamid, M.A.Farrukh, Synthesis and characterization of gold nanoparticles supported on zinc oxide via the deposition-precipitation method, Turkish J. Chem. (2010) 639–650. [35] F. Moreau, G.C. Bond, A.O. Taylor, Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents, J. Catal. 231 (1) (2005) 105–114. [36] F. Moreau, G.C. Bond, Gold on titania catalysts, influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide, Appl. Catal. A Gen. 302 (1) (2006) 110–117. [37] F. Moreau, G.C. Bond, Influence of the surface area of the support on the activity of gold catalysts for CO oxidation, Catal. Today 122 (3–4) (2007) 215–221. [38] M.A. Centeno, I. Carrizosa, J.A. Odriozola, Deposition-precipitation method to obtain supported gold catalysts: dependence of the acid-base properties of the support exemplified in the system TiO2-TiOxNy-TiN, Appl. Catal. A Gen. 246 (2) (2003) 365–372. [39] M.Á. Centeno, C. Portales, I. Carrizosa, J.A. Odriozola, Gold supported CeO2/Al2O3 catalysts for CO oxidation: influence of the ceria phase, Catal. Lett.102 (3–4) (2005) 289–297. [40] S. Ivanova, C. Petit, V.Pitchon, A new preparation method for the formation of gold nanoparticles on an oxide support, Appl. Catal. A Gen. 267 (1–2) (2004) 191–201. [41] X. Liu, H.Q. Li, S. Ye, Y.M. Liu, H.Y. He, Y. Cao, Gold-catalyzed direct hydrogenative coupling of nitroarenes to synthesize aromatic azo compounds, Angewandte Chemie 126 (29) (2014) 7754–7758. [42] R. Bernd, Müller, Photocatalytic oxidation of ethanol on micrometer- and nanometer-sized semiconductor particles, J. Photochem. Photobiol. A Chem. 151 (1–3) (2002) 253–265. [43] Shinbeom, Lee, Acetophenone hydrogenation on Rh/Al2O3 catalyst: intrinsic reaction kinetics and effects of internal diffusion, Chem. Eng. J. 288 (2016) 711–723. [44] B.R. Müller, Effect of particle size and surface area on the adsorption of albumin-bonded bilirubin on activated carbon, Carbon 48 (12) (2010) 3607–3615. [45] Yoogyeong, Kim, Particle size and interlayer anion effect on chromate adsorption by MgAl-layered double hydroxide, Appl. Clay Sci. 225 (2022) 106552. [46] G.C. Bond, D.T. Thompson, Catalysis by gold, Catal. Rev. 41 (1999) 319–388. [47] F. Cárdenas-Lizana, S. Gómez-Quero, H. Idriss, M.A.Keane, Gold particle size effects in the gas-phase hydrogenation of m-dinitrobenzene over Au/TiO2, J. Catal. 268 (2) (2009) 223–234. [48] Y.J. Guan, E.J.M. Hensen, Ethanol dehydrogenation by gold catalysts: the effect of the gold particle size and the presence of oxygen, Appl. Catal. A Gen. 361 (1–2) (2009) 49–56. [49] B.E.Hayden, Particle size and support effects in electrocatalysis, Acc. Chem. Res. 46 (8) (2013) 1858–1866. [50] Jiayu, Song, LDH derived MgAl2O4 spinel supported Pd catalyst for the low-temperature methane combustion: roles of interaction between spinel and PdO, Appl. Catal. A Gen. 621 (2021) 118211. [51] M. Abbas, U. Sikander, M.T. Mehran, S.H.Kim, Exceptional stability of hydrotalcite derived spinel Mg(Ni)Al2O4 catalyst for dry reforming of methane, Catal. Today 403 (2022) 74–85. [52] H.Y. Kim, H.M. Lee, G.Henkelman, CO oxidation mechanism on CeO2-supported Au nanoparticles, J. Am. Chem. Soc. 134 (3) (2012) 1560–1570. [53] T.K. Ghosh, N.N. Nair, Rh1/γ-Al2O3 single-atom catalysis of O2 activation and CO oxidation: mechanism, effects of hydration, oxidation state, and cluster size, ChemCatChem 5 (7) (2013) 1811–1821. [54] W.-C. Li, M. Comotti, F. Schüth, Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation, J. Catal. 237 (1) (2006) 190–196. [55] A. Araia, Y.X. Wang, B. Robinson, C.L. Jiang, S. Brown, C. Wildfire, D. Shekhawat, J.L.Hu, Microwave-assisted ammonia synthesis over Cs-Ru/CeO2 catalyst at ambient pressure: effects of metal loading and support particle size, Catal. Commun. 170 (2022) 106491. [56] A.M. Abdel-Mageed, K. Wiese, A. Hauble, J. Bansmann, J. Rabeah, M. Parlinska-Wojtan, A. Brückner, R.J.Behm, Steering the selectivity in CO2 reduction on highly active Ru/TiO2 catalysts: support particle size effects, J. Catal. 401 (2021) 160–173. [57] CHEN, Rizhi, Effect of alumina particle size on Ni/Al2O3 catalysts for p-nitrophenol hydrogenation*, Chin. J. Chem. Eng. 15 (6) (2007) 884–888. [58] N.H. Turner, A.M. Single, Determination of peak positions and areas from wide-scan XPS spectra, Surf. Interface Anal. 15 (3) (1990) 215–222. [59] X.Y. Liu, M.H. Liu, Y.C. Luo, C.Y. Mou, S.D. Lin, H.K. Cheng, J.M. Chen, J.F. Lee, T.S.Lin, Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation, J. Am. Chem. Soc. 134 (24) (2012) 10251–10258. [60] K.J. You, C.T. Chang, B.J. Liaw, C.T. Huang, Y.Z.Chen, Selective hydrogenation of α, β-unsaturated aldehydes over Au/MgxAlO hydrotalcite catalysts, Appl. Catal. A Gen. 361 (1–2) (2009) 65–71. [61] X.C. Sun, K. Yuan, J.H. Zhou, C.Y. Yuan, H.C. Liu, Y.W.Zhang, Au3+ species-induced interfacial activation enhances metal-support interactions for boosting electrocatalytic CO2 reduction to CO, ACS Catal. 12 (2) (2022) 923–934. [62] C.S. Merida, D. Le, E.M. Echeverria, A.E. Nguyen, T.B. Rawal, S.N. Alvillar, V. Kandyba, A. Al-Mahboob, Y. Losovyj, K. Katsiev, M.D. Valentin, C.Y. Huang, M.J. Gomez, I.H. Lu, A. Guan, A. Barinov, T.S. Rahman, P.A. Dowben, L. Bartels, Gold dispersion and activation on the basal plane of single-layer MoS2, J. Phys. Chem. C 122 (2018) 267–273. [63] S. Ivanova, V. Pitchon, Y. Zimmermann, C.Petit, Preparation of alumina supported gold catalysts: influence of washing procedures, mechanism of particles size growth, Appl. Catal. A Gen. 298 (2006) 57–64. [64] D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. Knight, G.J.Hutchings, Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts, Science 311 (5759) (2006) 362–365. [65] I. Dobrosz, K. Jiratova, V. Pitchon, J.M.Rynkowski, Effect of the preparation of supported gold particles on the catalytic activity in CO oxidation reaction, J. Mol. Catal. A Chem. 234 (1–2) (2005) 187–197. [66] Y.C. Li, L. Wang, R.Y. Yan, J.X. Han, S.J.Zhang, Gold nanoparticles supported on Ce-Zr oxides for the oxidative esterification of aldehydes to esters, Catal. Sci. Technol. 5 (7) (2015) 3682–3692. [67] M.U. Farooq, X.X. Zhang, Y.N. Guan, W.Y. Chen, J.H. Zhou, J. Zhang, G. Qian, X.Z. Duan, X.G. Zhou, W.K. Yuan, Synergistic electronic and geometric effects of Au/CeO2 catalyst for oxidative esterification of methacrolein, Aiche J. 69 (1) (2023) e17932. [68] Y. Liao, H. Yan, J.J. Zhou, Y.N. Yue, Y.H. Sun, T. Peng, X.C. Yuan, X. Zhou, Y.B. Liu, X. Feng, X.B. Chen, C.H.Yang, Interfacial Auδ--OV-Zr3+ structure promoted C H bond activation for oxidative esterification of methacrolein to Methyl methacrylate, Chem. Eng. J. 454 (2023) 140322. |