[1] F. Oppong, Z.Y. Luo, X.L. Li, C.S. Xu, Inherent instabilities in ethyl acetate premixed flames, Fuel 290 (2021) 120000. [2] F. Oppong, C.S. Xu, Z.Y. Luo, X.L. Li, W.H. Zhou, C.M. Wang, Cellularization of 2-methylfuran expanding spherical flame, Combust. Flame 206 (2019) 379–389. [3] S.K. Musyoka, A.S.G. Khalil, S.A. Ookawara, A.E. Elwardany, Effect of C4 alcohol and ester as fuel additives on diesel engine operating characteristics, Fuel 341 (2023) 127656. [4] L. Aguado-Deblas, R. Estevez, J. Hidalgo-Carrillo, F.M. Bautista, C. Luna, J. Calero, A. Posadillo, A.A. Romero, D. Luna, Outlook for direct use of sunflower and castor oils as biofuels in compression ignition diesel engines, being part of diesel/ethyl acetate/straight vegetable oil triple blends, Energies 13 (18) (2020) 4836. [5] M.K. Yeşilyurt, D. Erol, H. Yaman, B. Doğan, Effects of using ethyl acetate as a surprising additive in SI engine pertaining to an environmental perspective, Int. J. Environ. Sci. Technol. 19 (10) (2022) 9427–9456. [6] A. Çakmak, M. Kapusuz, H. Özcan, Experimental research on ethyl acetate as novel oxygenated fuel in the spark-ignition (SI) engine, Energy Sources A 45 (1) (2023) 178–193. [7] T. Badawy, J. Williamson, H.M. Xu, Laminar burning characteristics of ethyl propionate, ethyl butyrate, ethyl acetate, gasoline and ethanol fuels, Fuel 183 (2016) 627–640. [8] M.N.A.M. Yusoff, N.W.M. Zulkifli, H.H. Masjuki, M.H. Harith, A.Z. Syahir, M.A. Kalam, M.F. Mansor, A. Azham, L.S. Khuong, Performance and emission characteristics of a spark ignition engine fuelled with butanol isomer-gasoline blends, Transp. Res. D 57 (2017) 23–38. [9] S.L. Wu, H.W. Yang, J. Hu, D.K. Shen, H.Y. Zhang, R. Xiao, The miscibility of hydrogenated bio-oil with diesel and its applicability test in diesel engine: A surrogate (ethylene glycol) study, Fuel Process. Technol. 161 (2017) 162–168. [10] L.Y. Zhang, J. Lin, R.Z. Qiu, Characterizing the toxic gaseous emissions of gasoline and diesel vehicles based on a real-world on-road investigation, J. Clean. Prod. 286 (2021) 124957. [11] A. Yang, Y. Su, S.R. Sun, W.F. Shen, M.N. Bai, J.Z. Ren, Towards sustainable separation of the ternary azeotropic mixture based on the intensified reactive-extractive distillation configurations and multi-objective particle swarm optimization, J. Clean. Prod. 332 (2022) 130116. [12] H.J. Gai, K.Q. Lin, Y.R. Feng, M. Xiao, K. Guo, H.B. Song, Conceptual design of an extractive distillation process for the separation of azeotropic mixture of n-butanol-isobutanol-water, Chin. J. Chem. Eng. 26 (10) (2018) 2040–2047. [13] X. Gao, X.L. Geng, Application of the chemical-looping concept for azoetrope separation, Engineering 7 (1) (2021) 84–93. [14] Y.X. Ma, K. Ma, H.X. Wang, X.L. Geng, J. Gao, Z.Y. Zhu, Y.L. Wang, QSPR modeling of azeotropic temperatures and compositions for binary azeotropes containing lower alcohols using a genetic function approximation, Chin. J. Chem. Eng. 27 (4) (2019) 835–844. [15] X.Y. Yi, J.E. Kong, Y.F. Song, J.E. Wang, L.Y. Sun, Isobaric vapor–liquid equilibria and extractive distillation process design for separating ethanol and diethoxymethane, J. Chem. Eng. Data 66 (12) (2021) 4326–4334. [16] H. Li, G.L. Sun, D.Y. Li, L. Xi, P. Zhou, X.G. Li, J. Zhang, X. Gao, Molecular interaction mechanism in the separation of a binary azeotropic system by extractive distillation with ionic liquid, Green Energy Environ. 6 (3) (2021) 329–338. [17] D. Haßkerl, C. Lindscheid, S. Subramanian, S. Markert, A. Górak, S. Engell, Dynamic performance optimization of a pilot-scale reactive distillation process by economics optimizing control, Ind. Eng. Chem. Res. 57 (36) (2018) 12165–12181. [18] N. Medina-Herrera, A. Jiménez-Gutiérrez, L.A. Ricardez-Sandoval, S. Tututi-Avila, An approach for dynamic transitions in multiproduct reactive distillation columns, Chem. Eng. Process. Process. Intensif. 153 (2020) 107967. [19] L. Qi, J.L. Li, A. Yang, X.G. Yi, W.F. Shen, Toward a sustainable azeotrope separation of acetonitrile/water by the synergy of ionic liquid-based extractive distillation, heat integration, and multiobjective optimization, Ind. Eng. Chem. Res. 61 (27) (2022) 9833–9846. [20] H. Chao, Z. Song, H.Y. Cheng, L.F. Chen, Z.W. Qi, Computer-aided design and process evaluation of ionic liquids for n-hexane-methylcyclopentane extractive distillation, Sep. Purif. Technol. 196 (2018) 157–165. [21] L.Q. Yan, J.L. Li, X. Jian, X.H. Li, J.Y. Zhang, Q. Ye, Evaluation on the separation effect and extractant recovery efficiency of extractive distillation for separating ethyl acetate/methanol with ionic liquids as extractants, Process. Saf. Environ. Prot. 167 (2022) 343–355. [22] L.Q. Yan, J.L. Li, Q. Ye, X. Jian, X.H. Li, L.C. Xie, J.Y. Zhang, Sustainable wastewater treatment via extractive distillation process with ionic liquid as entrainer for the separation of ethyl acetate/isopropanol/water, Process. Saf. Environ. Prot. 160 (2022) 527–540. [23] Y.D. Cao, J. Romero, J.P. Olson, M. Degroote, P.D. Johnson, M. Kieferová, I.D. Kivlichan, T. Menke, B. Peropadre, N.P.D. Sawaya, S. Sim, L. Veis, A. Aspuru-Guzik, Quantum chemistry in the age of quantum computing, Chem. Rev. 119 (19) (2019) 10856–10915. [24] Y.L. Zhang, K. Xue, H.Y. Li, S.Y. Lian, C.Y. Han, Z.Y. Zhu, Y.Y. Lu, J.G. Qi, Y.L. Wang, Mechanism analysis and liquid-liquid equilibrium of methyl tert-butyl ether separation from petroleum wastewater azeotrope by green mixed solvent, J. Environ. Chem. Eng. 11 (2) (2023) 109389. [25] S.R. Sun, L.P. Lü, A. Yang, S.A. Wei, W.F. Shen, Extractive distillation: Advances in conceptual design, solvent selection, and separation strategies, Chin. J. Chem. Eng. 27 (6) (2019) 1247–1256. [26] H.K. Zhao, H. Gao, G.Q. Yu, Q.S. Li, Z.G. Lei, Capturing methanol and dimethoxymethane gases with ionic liquids, Fuel 241 (2019) 704–714. [27] C.Y. Zhang, B.Y. Chen, G.V. Korshin, A.M. Kuznetsov, P. Roccaro, M.Q. Yan, J.R. Ni, Comparison of the yields of mono-, Di- and tri-chlorinated HAAs and THMs in chlorination and chloramination based on experimental and quantum-chemical data, Water Res. 169 (2020) 115100. [28] M. Hapka, A. Krzemińska, K. Pernal, How much dispersion energy is included in the multiconfigurational interaction energy? J. Chem. Theory Comput. 16 (10) (2020) 6280–6293. [29] P.C. Hariharan, J.A. Pople, Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory, Mol. Phys. 27 (1) (1974) 209–214. [30] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox. Gaussian 09 Rev. C.01. Wallingford, CT; 2016. [31] T. Lu. Molclus program, Version1.9.9.5. http://www.keinsci.com/research/molclus.html, 2021. [32] M. Dewar, J. Stewart. http://openmopac.net/background.html, 2016. [33] Y.L. Zhang, X.M. Qiu, H.R. Zhang, W.X. Zhang, H.Q. Qi, Z.Y. Zhu, Y.L. Wang, J.W. Yang, Quantum chemistry of solvent selectivity and economic, exergy and environment analysis of extractive distillation process for separating binary azeotropic mixture, Journal of the Taiwan Institute of Chemical Engineers 129 (2021) 180–188. [34] X.M. Qiu, Y.J. Qu, M.J. Zhou, Y.Y. Liu, Z.Y. Zhu, Y.L. Wang, J.W. Yang, Comparison of deep eutectic solvents and organic solvent effects on the separation of ternary azeotropes by the experimental study and molecular simulation, ACS Sustainable Chem. Eng. 9 (48) (2021) 16424–16436. [35] T. Lu, Q.X. Chen, Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems, J. Comput. Chem. 43 (8) (2022) 539–555. [36] T. Lu, F.W. Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem. 33 (5) (2012) 580–592. [37] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1) (1996) 33–38, 27–28. [38] T.V. Balashova, M.E. Burin, V.A. Ilichev, A.A. Starikova, A.V. Marugin, R.V. Rumyantcev, G.K. Fukin, A.N. Yablonskiy, B.A. Andreev, M.N. Bochkarev, Features of the molecular structure and luminescence of rare-earth metal complexes with perfluorinated (benzothiazolyl)phenolate ligands, Molecules 24 (13) (2019) 2376. [39] J.B. Ouyang, B. Na, G.X. Xiong, L. Xu, T.X. Jin, Determination of solubility and thermodynamic properties of benzophenone in different pure solvents, J. Chem. Eng. Data 63 (5) (2018) 1833–1840. [40] J. Pavlíček, J. Rotrekl, G. Bogdanić, I. Wichterle, P. Izák, Vapor-liquid and liquid-liquid equilibria in the water+poly(propylene glycol) system, J. Mol. Liq. 337 (2021) 116336. [41] Y.C. Dong, C.N. Dai, Z.G. Lei, Separation of the methanol–ethanol–water mixture using ionic liquid, Ind. Eng. Chem. Res. 57 (32) (2018) 11167–11177. [42] C.M. Gui, R.S. Zhu, G.X. Li, C.N. Dai, G.Q. Yu, Z.G. Lei, Natural gas dehydration with ionic-liquid-based mixed solvents, ACS Sustainable Chem. Eng. 9 (17) (2021) 6033–6047. [43] J. Maculewicz, K. Świacka, P. Stepnowski, J. Dołżonek, A. Białk-Bielińska, Ionic liquids as potentially hazardous pollutants: Evidences of their presence in the environment and recent analytical developments, J. Hazard. Mater. 437 (2022) 129353. [44] R. Goutham, P. Rohit, S.S. Vigneshwar, A. Swetha, J. Arun, K.P. Gopinath, A. Pugazhendhi, Ionic liquids in wastewater treatment: A review on pollutant removal and degradation, recovery of ionic liquids, economics and future perspectives, J. Mol. Liq. 349 (2022) 118150. [45] D. Hartanto, D.S. Fardhyanti, N. Laela, R. Wulansarie, Harianingsih, N.A.C. Imani, A. Chafidz, R.D. Kusumaningtyas, I. Khoiroh, Anhydrous tert-butanol production via extractive distillation using glycerol as an entrainer: Technical performances simulation, IOP Conf. Ser.: Earth Environ. Sci. 700 (1) (2021) 012029. [46] Z.Y. Zhu, Y. Xu, H.Y. Li, Y.Y. Shen, D.P. Meng, P.Z. Cui, Y.X. Ma, Y.L. Wang, J. Gao, Separation of isopropyl alcohol and isopropyl ether with ionic liquids as extractant based on quantum chemical calculation and liquid-liquid equilibrium experiment, Sep. Purif. Technol. 247 (2020) 116937. [47] M. Khoutoul, F. Abrigach, A. Zarrouk, N.E. Benchat, M. Lamsayah, R. Touzani, New nitrogen-donor pyrazole ligands for excellent liquid-liquid extraction of Fe2+ ions from aqueous solution, with theoretical study, Res. Chem. Intermed. 41 (6) (2015) 3319–3334. [48] J. Ortega, F. Espiau, M. Postigo, Isobaric vapor–liquid equilibria and excess quantities for binary mixtures of an ethyl ester + tert-butanol and a new approach to VLE data processing, J. Chem. Eng. Data 48 (4) (2003) 916–924. |