[1] Z.F. Yan, J.X. Tian, K. Wang, K.D.P. Nigam, G.S. Luo, Microreaction processes for synthesis and utilization of epoxides: A review, Chem. Eng. Sci. 229 (2021) 116071. [2] A. Mariotti, M. Antognoli, C. Galletti, R. Mauri, M.V. Salvetti, E. Brunazzi, The role of flow features and chemical kinetics on the reaction yield in a T-shaped micro-reactor, Chem. Eng. J. 396 (2020) 125223. [3] K.F. Jensen, Flow chemistry—Microreaction technology comes of age, AIChE J. 63(3) (2017) 858–869. [4] F.S. Xu, L.X. Yang, Z.K. Liu, G.W. Chen, Numerical investigation on the hydrodynamics of Taylor flow in ultrasonically oscillating microreactors, Chem. Eng. Sci. 235 (2021) 116477. [5] K.A. Triplett, S.M. Ghiaasiaan, S.I. Abdel-Khalik, D.L. Sadowski, Gas–liquid two-phase flow in microchannels Part I: Two-phase flow patterns, Int. J. Multiphase Flow 25 (3) (1999) 377–394. [6] M. Kawaji, P.M.Y. Chung, Adiabatic gas–liquid flow in microchannels, Microscale Thermophys. Eng. 8(3) (2004) 239-257. [7] M.N. Kashid, L. Kiwi-Minsker, Microstructured reactors for multiphase reactions: State of the art, Ind. Eng. Chem. Res. 48(14) (2009) 6465–6485. [8] M.N. Kashid, A. Renken, L. Kiwi-Minsker, Gas–liquid and liquid–liquid mass transfer in microstructured reactors, Chem. Eng. Sci. 66(17) (2011) 3876–3897. [9] J. Yue, G.W. Chen, Q. Yuan, L.G. Luo, Y. Gonthier, Hydrodynamics and mass transfer characteristics in gas–liquid flow through a rectangular microchannel, Chem. Eng. Sci. 62(7) (2007) 2096–2108. [10] J. Yue, L.G. Luo, Y. Gonthier, G.W. Chen, Q. Yuan, An experimental study of air–water Taylor flow and mass transfer inside square microchannels, Chem. Eng. Sci. 64(16) (2009) 3697–3708. [11] H.J. Su, S.D. Wang, H.N. Niu, L.W. Pan, A.J. Wang, Y.K. Hu, Mass transfer characteristics of H2S absorption from gaseous mixture into methyldiethanolamine solution in a T-junction microchannel, Sep. Purif. Technol. 72(3) (2010) 326–334. [12] J.H. Xu, J. Tan, S.W. Li, G.S. Luo, Enhancement of mass transfer performance of liquid–liquid system by droplet flow in microchannels, Chem. Eng. J. 141(1–3) (2008) 242–249. [13] J. Tan, Y.C. Lu, J.H. Xu, G.S. Luo, Mass transfer characteristic in the formation stage of gas–liquid segmented flow in microchannel, Chem. Eng. J. 185-186 (2012) 314–320. [14] J. Tan, Y.C. Lu, J.H. Xu, G.S. Luo, Mass transfer performance of gas–liquid segmented flow in microchannels, Chem. Eng. J. 181–182 (2012) 229–235. [15] L. Yang, J. Tan, K. Wang, G.S. Luo, Mass transfer characteristics of bubbly flow in microchannels, Chem. Eng. Sci. 109 (2014) 306–314. [16] Z.B. Peng, G.C. Wang, B. Moghtaderi, E. Doroodchi, A review of microreactors based on slurry Taylor (segmented) flow, Chem. Eng. Sci. 247 (2022) 117040. [17] L. Bai, S.F. Zhao, Y.H. Fu, Y. Cheng, Experimental study of mass transfer in water/ionic liquid microdroplet systems using micro-LIF technique, Chem. Eng. J. 298 (2016) 281–290. [18] C.Q. Yao, Y.C. Zhao, H.Y. Ma, Y.Y. Liu, Q.K. Zhao, G.W. Chen, Two-phase flow and mass transfer in microchannels: A review from local mechanism to global models, Chem. Eng. Sci. 229 (2021) 116017. [19] M. Mei, C. Le Men, K. Loubière, G. Hébrard, N. Dietrich, Taylor bubble formation and flowing in a straight millimetric channel with a cross-junction inlet geometry Part II: Gas–liquid mass transfer, Chem. Eng. Sci. 258 (2022) 117752. [20] P. Tortopidis, V. Bontozoglou, Mass transfer in gas–liquid flow in small-diameter tubes, Chem. Eng. Sci. 52(14) (1997) 2231–2237. [21] P. Sobieszuk, R.Pohorecki, P. Cygański, J Grzelka, Determination of the interfacial area and mass transfer coefficients in the Taylor gas–liquid flow in a microchannel, Chem. Eng. Sci. 66(23) (2011) 6048–6056. [22] A. Muller, V. Cominos, V. Hessel, B. Horn, J. Schurer, A. Ziogas, K. Jahnisch, V. Hillmann, V. Groser, K.A. Jam, Fluidic bus system for chemical process engineering in the laboratory and for small-scale production, Chem. Eng. J. 107(1–3) (2005) 205–214. [23] T.M. Xie, C.F. Zeng, C.Q. Wang, L.X. Zhang, Preparation of methyl ester sulfonates based on sulfonation in a falling film microreactor from hydrogenated palm oil methyl esters with gaseous SO3, Ind. Eng. Chem. Res. 52(10) (2013) 3714–3722. [24] M. Yuan, H.B. Feng, W. Zhang, J.R. Zheng, K. Zhang, X.X. Kong, N.C. Han, J.X. Dong, Gas–liquid sulfonation in T-shaped microchannel for DBSA synthesis and process optimization with response surface method, Chem. Eng. Process. Process. Intensif. 174 (2022) 108890. [25] Z.Y. Guo, D.F. Fletcher, B.S. Haynes, Numerical simulation of annular flow hydrodynamics in microchannels, Comput. Fluids 133 (2016) 90–102. [26] Y. Luo, W. Li, K. Zhou, K. Sheng, S. Shao, Z.J. Zhang, J.C. Du, W.J. Minkowycz, Three-dimensional numerical simulation of saturated annular flow boiling in a narrow rectangular microchannel, Int. J. Heat Mass Transf. 149 (2020) 119246. [27] D.K. Mishra, D. Mohanty, R. Gupta, A. Singh, Effect of bend on film thickness in slug, slug-annular, and annular flow regimes in gas–liquid flow in a microchannel, Ind. Eng. Chem. Res. 61(37) (2022) 14081–14092. [28] S.H. Chen, Z. Yang, Y.Y. Duan, Y. Chen, D. Wu, Simulation of condensation flow in a rectangular microchannel, Chem. Eng. Process. Proccess. Intensif. 76 (2014) 60–69. [29] C. Zheng, M.D. Zhang, S.C. Qiu, H.S. Li, T. Wang, H.W. Wang, Numerical simulation and experimental investigation of gas–liquid two-phase flow in a complex microchannel, Chem. Eng. Sci. 230 (2021) 116198. [30] M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. Comput. Phys. 162(2) (2000) 301–337. [31] D.X. Liu, W.Y. Tang, J. Wang, H.X. Xue, K.P. Wang, Modelling of liquid sloshing using CLSVOF method and very large eddy simulation, Ocean. Eng. 129(1) (2017) 160–176. [32] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100(2) (1992) 335–354. [33] M. Kawaji, P.M.Y. Chung, A. Kawahara, Instantaneous velocity profiles and characteristics of pressure-driven flow in microchannels, In: Proceeding of ASME 2001 International Mechanical Engineering Congress and Exposition, New York, USA, 2021. [34] A. Kawahara, P.M.Y. Chung, M. Kawaji, Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel, Int. J. Multiphase Flow 28 (9) (2002) 1411–1435. [35] Y.H. Geng, S.D. Ling, J.P. Huang, J.H. Xu, Multiphase microfluidics: Fundamentals, fabrication, and functions, Small 16 (6) (2020) 1906357. [36] V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Comput. 1 (1) (1986) 3–51. [37] A. Bordbar, S. Kheirandish, A. Taassob, R. Kamali, A. Ebrahimi, High-viscosity liquid mixing in a slug-flow micromixer: A numerical study, J. Flow Chem.10 (2) (2020) 449–459. [38] Y.S. Wang, Q.H. Wu, M.Q. Hu, B. Liu, Z.Y. Chai, R. Huang, Y. Wang, H.D. Xu, L. Zhou, L.H. Zheng, C.H. Wang, Z. Zhou, Ligand- and voltage-gated Ca2+ channels differentially regulate the mode of vesicular neuropeptide release in mammalian sensory neurons, Sci. Signal.10 (484) (2017) eaal1683. [39] G.D. Wehinger, J. Peeters, S. Muzaferija, T. Eppinger, M. Kraume, Numerical simulation of vertical liquid-film wave dynamics, Chem. Eng. Sci. 104 (2013) 934–944. [40] C.L. Ong, J.R. Thome, Macro-to-microchannel transition in two-phase flow: Part 1. Two-phase flow patterns and film thickness measurements, Exp. Therm. Fluid Sci. 35(1) (2011) 37–47. [41] S. Jayanti, G.F. Hewitt, Hydrodynamics and heat transfer of wavy thin film flow, Int. J. Heat. Mass Transf. 40(1) (1996) 179–190. |